Algorithms on closure systems and their representations

Simon Vilmin

LIMOS, CNRS, Université Clermont Auvergne

December 13, 2021

Committee

Kira Karell Sergeï Arnaud Lhouari

Reviewer Adaricheva Reviewer BERTET KUZNETSOV Reviewer Examiner Mary Jean-Marc PETIT Examiner Advisor NOURINE

Funded by the ProFan Project

Introduction > Back to school

- Initial motivation: Knowledge Space Theory [Doignon, Falmagne, 1985].
- Some questions of an automated test:
 - 1. Graphically solve $4x^2 3x + 2 = 0$.
 - 2. Figure out $\frac{\sqrt{4} \times \sqrt{9}}{3} \frac{6 \times 7}{\sqrt{144}}$.
 - 3. Compute the discriminant of $3x^2 x + 8$.
 - 4. Study the polynomial $7x^2 + 11x 5$.
- Each question corresponds to a *problem* or *item*:
 - 1. Graphical resolution.
 - 2. Arithmetic.
 - 3. Formula of discriminant.
 - 4. Study of a 2nd order polynomial.

Introduction > Time for results!

	1	2	3	4
Wolf	×			
Lil		×	×	
Lazuli		×	×	×
Folavril	×	×		×
Dupont		×		

- Some students took the test!
- Lazuli masters item 3.
- {2,3} is the *knowledge state* of Lil.

Introduction > Knowledge spaces

• *Knowledge space* \mathcal{K} over a (finite) collection of items V:

Introduction > Knowledge spaces and closure systems

Definition ► Closure system

Closure system $C \subseteq \mathbf{2}^V$ over V:

- Contains V.
- Closed by intersection: $C_1, C_2 \in C$ entails $C_1 \cap C_2 \in C$.

- Sets in C are closed sets.
- (\mathcal{C}, \subseteq) is a (closure) lattice.
- Induces a closure operator φ:
 φ(X): minimal closed set including X.
- Closure system = complement of Knowledge space!
- C standard: $\phi(v) \setminus \{v\} \in C$ for each $v \in V$.

Introduction > Closure systems in computer science

• Closure systems are ubiquitous ...

- Knowledge Space Theory (KST),
- Formal Concept Analysis (FCA),
- Propositional logic,

- Argumentation theory,
- o Databases,

o ...

- ... but they have HUGE size ...
 - If V has n elements, C can have 2ⁿ closed sets!
- ... and can be hard to understand:
 - In KST: asking teachers to provide raw knowledge states is impractical.
- We need implicit representations!

Introduction > Implications

Definition ► Implications

- *Implication*: expression $A \rightarrow B$, where $A, B \subseteq V$.
- *Implicational base*: set Σ of implications.
- "If the students fail the items in A, they will fail the items in B".
- Σ represents a *unique* closure system *C*.
- C can be represented by several (equivalent) Σ .

Introduction > Meet-irreducible elements

Definition ► Meet-irreducible elements

Closure system C over V:

- $M \in C \setminus \{V\}$ meet-irreducible if $M = C_1 \cap C_2$ implies $M = C_1$ or $M = C_2$, $C_1, C_2 \in C$.
- \mathcal{M} collection of all meet-irreducible elements of \mathcal{C} .

- *C* fully recovered from *M* by taking intersections.
- \mathcal{M} is the "core" of \mathcal{C} .
- $M \in \mathcal{M}$ iff unique cover.

Introduction > Pros and cons

Question	Σ	\mathcal{M}	С
is v in a min. generator of u?	×	1	1
is <i>P</i> pseudo-closed?	1	×	1
is ${\mathcal C}$ join-semidistributive?	?	1	1
Relative size			
size of w.r.t. Σ	_	exp(Σ)	exp(Σ)
size of w.r.t. ${\cal M}$	$\exp(\mathcal{M})$	—	$\exp(\mathcal{M})$
size of w.r.t. ${\cal C}$	$\leq \mathcal{C} \times V $	$\leq \mathcal{C} $	—

PolynomialNP-complete

Introduction > Context in a slide

Translation > Travelling between the representations

Translation \triangleright From Σ to \mathcal{M}

Problem ► ENUM. MEET-IRR. ELEMENTS (CCM)

- *Input:* an implicational base Σ for a closure system C over V.
- *Output:* the meet-irreducible \mathcal{M} of \mathcal{C} .
- Surveys by [Bertet et al., 2018], [Wild, 2017].
- Hardness results:
 - Unknown complexity.
 - Harder than hypergraph dualization (MISENUM), [Khardon, 1995].
 - Enumerating co-atoms is intractable (dualization), [Kavvadias et al., 2000].
- Positive results:
 - General (exponential) algorithms [Mannila, Räihä, 1992], [Wild, 1995].
 - Tractable cases: meet-semidistributive, types of convex geometries [Beaudou et al., 2017], [Defrain, Nourine, V., 2021].

Translation > Split

- Strategy:
 - \circ Hierarchical decomposition of Σ .
 - $\circ~$ Recursive construction of $\mathcal{M}.$

Definition ► Split

 Σ implicational base over V:

- Split of Σ : bipartition (V_1, V_2) of V such that $A \subseteq V_1$ or $A \subseteq V_2$ for every $A \rightarrow B \in \Sigma$.
- Split (V_1, V_2) partitions Σ :
 - $\Sigma[V_1]$ implications included in V_1 , with induced C_1 , M_1 .
 - $\Sigma[V_2]$ implications included in V_2 , with induced C_2 , M_2 .
 - $\Sigma[V_1, V_2]$ implications from V_1 to V_2 or from V_2 to V_1 .

Translation > Split operation

Translation > Recognizing splits

Proposition ► Recognizing splits

 Σ has a split (V_1 , V_2) if and only if it is not premise-connected.

Translation > Hierarchical Decomposition

Theorem ► Nourine, V.

Let Σ be an implicational base over V. A Σ -tree can be computed in *polynomial time and space* in the size of Σ , if it exists.

• H-decomposition of Σ implies H-decomposition of C.

•
$$\mathcal{C} \subseteq \mathcal{C}_1 \times \mathcal{C}_2$$
.

Translation \triangleright Constructing C, M with empty split

Definition ► Acyclic split

 Σ an implicational base over V:

• Acyclic split of Σ : split (V_1, V_2) s.t. $A \subseteq V_1$ for each $A \rightarrow B \in \Sigma[V_1, V_2]$.

Translation > Constructing C with acyclic split

Translation > Running example

Translation \triangleright Constructing M

- Case 1: $V_2 \subseteq M$:
 - $C \in \operatorname{Ext}(V_2)$ iff $C = C_1 \cup V_2$ $(C_1 \in C_1)$.
 - $M \in \mathcal{M}$ iff $M = M_1 \cup V_2$ $(M_1 \in \mathcal{M}_1)$.
- Case 2: $V_2 \not\subseteq M$:
 - $M \in \text{Ext}(M_2), M_2 \in \mathcal{M}_2$ (increasing extensions).
 - $M \in \max(\operatorname{Ext}(M_2))$ for some $M_2 \in \mathcal{M}_2$.
 - $M \in \mathcal{M}$ iff $M \in \max(\operatorname{Ext}(M_2))$ $(M_2 \in \mathcal{M}_2)$.

Theorem ► Nourine, V.

Let Σ be an implicational base over V with acyclic split (V_1, V_2) . Then $|\mathcal{M}| \ge |\mathcal{M}_1| + |\mathcal{M}_2|$ and:

```
\mathcal{M} = \{M_1 \cup V_2 \mid M_1 \in \mathcal{M}_1\} \cup \{C \in \max(\operatorname{Ext}(M_2)) \mid M_2 \in \mathcal{M}_2\}
```


Translation > Running example

Translation > Algorithm for CCM

- Beware:
 - 1. Size of \mathcal{M}_1 , \mathcal{M}_2 ? \checkmark
 - 2. Complexity of ComputeMeet?
 - 3. Complexity of finding extensions.

Translation > Complexity of computing maximal extensions

Problem > Computing Maximal Extension (MaxExt)

- Input: implicational base Σ with acyclic split (V_1, V_2) , \mathcal{M}_1 (resp. \mathcal{M}_2) the meet-irreducible elements associated to $\Sigma[V_1]$ (resp. $\Sigma[V_2]$), a closed set C_2 of $\Sigma[V_2]$.
- Output: max(Ext(C₂)).
- max(Ext(C₂)) has a *dual* antichain in C₁ coded by Σ[V₁, V₂].
- MAXEXT is then equivalent to dualization with $\mathcal M$ and Σ .
- If $\Sigma[V_1] = \emptyset$, MAXEXT is equivalent to MISENUM.

Corollary > Applications

Let Σ be an implicational base over V. Assume there exists a full partition V_1, \ldots, V_k of V such that for every implication $A \rightarrow b \in \Sigma$, $A \subseteq V_i$ and $b \in V_j$ for some $1 \le i < j \le k$. Then CCM can be solved in *output-quasipolynomial time*.

- Particular case of *acyclic convex geometry* [Adaricheva, 2017], [Hammer, Kogan, 1995].
- Generalizes ranked convex geometry [Defrain, Nourine, V., 2021], where CCM is equivalent to MISENUM.
- Also works for "simple closure systems" (diamonds, pentagons, etc).

Translation > Summary and perspectives

• Problem:

- CCM: enumerating meet-irreducible elements from implications.
- Unknown complexity, harder than MISENUM.
- Results:
 - (Acyclic) split operation.
 - $\circ~$ Hierarchical decomposition of $\Sigma,$ recursive construction of $\mathcal M.$
 - New tractable cases (output-quasipolynomial time) in acyclic convex geometries.

• Further research:

- *Recognition* of an acyclic split from *M*?
- Generalization to "simple" non-acyclic splits?
- Complexity of CCM in (acyclic) convex geometries?

Second problem
Forbidden pairs in closure systems

Forbidden pairs > Dualization and forbidden sets

- Closure system C (given by Σ or M), forbidden sets $\mathcal{F} = \{134, 15, 24\}$.
- 1 is lower-admissible : does not contain a set in \mathcal{F} .
- 12 is *lower-preferred* : *inclusion-wise max.* lower-admissible.

Forbidden pairs \triangleright The hardness of dualization DUAL(α)

Forbidden pairs \triangleright The problem ELP-P(α)

Definition ► lower-preferred closed sets

C closure system over V, family \mathcal{F} over V of forbidden pairs for C:

- Lower-admissible if $F \not\subseteq C$ for each $F \in \mathcal{F}$.
- Lower-preferred if inclusion-wise max. lower-admissible.

Problem \triangleright Enum. Lower-Pref. with forb. Pairs (ELP-P(α))

- Input: a representation α for a closure system C, a family F of forbidden pairs (both over V).
- *Output: lower-preferred* closed sets of *C* w.r.t. *F*.

Forbidden pairs ▷ Other applications

Models inconsistency:

- Poset + forbidden pairs: representation for median semilattices [Barthélemy, Constantin, 1993].
- implications + forbidden pairs: representation for modular semilattices [Hirai, Nakashima, 2018].

Forbidden pairs \triangleright The complexity of ELP-P(α)

Bool = Boolean D = Distributive SD = Semidistributive Ext = Extremal M = Modular SM = Semimodular B = Bounded CG = Convex Geometry

• Output-poly • \geq DUAL(α) in CG, B or D_V • ELP-P(Σ) hard

Corollary ► Nourine, V.

The problem ELP-P(α) is *intractable*. Moreover, ELP-P(Σ) is *intractable* in *lower-bounded* and *join-extremal* closure systems.

Forbidden pairs > Carathéodory number

Definition > Minimal Generator, Carathéodory number

 ${\mathcal C}$ (standard) closure system over V:

- $A \subseteq V$ minimal generator of $u \in V$: $u \in \phi(A)$ and $u \notin \phi(A')$, $\forall A' \subset A$.
- Carathéodory number cc(C) of C: maximal size of a minimal generator.

Theorem ► Nourine, V.

The problem ELP-P(α) can be solved in:

- *Output-polynomial time* if $cc(C) \le k$, for some constant $k \in \mathbb{N}$.
- Output-quasipolynomial time if $cc(C) \le log(|V|)$.

Forbidden pairs > Tractable cases

• Closure systems where cc(C) is constant:

• Biatomicity [Bennett, 1987] + Independence criterion [Grätzer, 2011].

Corollary ► Nourine, V.

The problem ELP-P(α) can be solved in output-quasipolynomial time in atomistic modular closure systems.

Forbidden pairs \triangleright ELP-P(α): the big picture

- Further research:
 - Complexity of ELP-P(α) in modular and extremal closure systems?
 - Characterize the lattices where $ELP-P(\alpha) \equiv$ enumerate max. independent sets of a graph?

Conclusion > Summary and perspectives

- Context:
 - Initial motivation from knowledge spaces (ProFan project).
 - Theoretical study of closure systems and their representations.
- First problem translating between the representations:
 - о Unknown complexity, harder than MISENUM.
 - New tractable classes based on hierarchical decompositions of implications.
 - o (Not in this talk) previous work on ranked convex geometries.
- Second problem closure systems with forbidden sets:
 - Enumerating admissible and preferred closed sets.
 - Hardness results for ELP-P(α) using DUAL(α), tractable cases based on the Carathéodory number.
 - o (Not in this talk) results for forbidden supersets.
- Open questions:
 - What is the complexity of CCM in acyclic convex geometries?
 - Characterize the lattices where ELP-P(α) = max. independent sets of a graph?

Conclusion > Productions

Translation:

- The enumeration of meet-irreducible elements based on hierarchical decompositions of implicational bases. With Lhouari Nourine. Submitted to Theoretical Computer Science and communicated at WEPA 2020, FCA4AI 2020, ICTCS 2020.
- Translating between the representations of a ranked convex geometry. With Oscar Defrain and Lhouari Nourine.
 Published in Discrete Mathematics (2021) and communicated at WEPA 2019.
- Forbidden sets:
 - Enumerating maximal consistent closed sets in closure systems. With Lhouari Nourine.
 Published in Proceedings of ICFCA 2021 and communicated at ICFCA 2021.
- Other:
 - Towards declarative comparabilities: application to functional dependencies. With Lhouari Nourine and Jean-Marc Petit.
 Under review in Journal of Computer and System Sciences and communicated at BDA 2021.

Thank you for your attention!

Conclusion > References

- K. Adaricheva Optimum Basis of Finite Convex Geometry. Discrete Applied Mathematics, 230 :11-20, 2017.
- M. Babin, S. Kuznetsov Dualization in lattices given by ordered sets of irreducibles. Theoretical Computer Science, 658 :316-326, 2017.
- J-P. Barthélemy, J. Constantin Median graphs, parallelism and posets. Discrete Mathematics, 111 :49-63, 1993.
- L. Beaudou, A. Mary, and L. Nourine.
 Algorithms for k-meet-semidistributive lattices.
 Theoretical Computer Science, 658 :391-398, 2017.
- M.K. Bennett Biatomic lattices. Algebra Universalis, 24 :60-73, 1987.
- K. Bertet, C. Demko, and J.-F. Viaud, and C. Guérin. Lattices, closures systems and implication bases: A survey of structural aspects and algorithms. Theoretical Computer Science, 743 :93-109, 2018.
- O. Defrain, L. Nourine, T. Uno. On the dualization in distributive lattices and related problems. Discrete Applied Mathematics, 300:85–96, 2021.

 O. Defrain, L. Nourine, S. Vilmin. Translating between the representations of a ranked convex geometry.

Discrete Mathematics, 344 :112399, 2021.

- J.P. Doignon, J.C. Falmagne.
 Spaces for the assessment of knowledge. International journal of man-machine studies, 23(2) :175-196, 1985.
- T. Eiter, G. Gottlob, K. Makino. New results on monotone dualization and generating hypergraph transversals. SIAM Journal on Computing, 32:514-537, 2003.
- K. Elbassioni. Algorithms for dualization over products of partially ordered sets. SIAM Journal on Discrete Mathematics, 23 :487–510, 2009.
- K. Elbassioni. On dualization over distributive lattices. arXiv preprint, arXiv:2006.15337, 1996.
- M. Fredman, L. Khachiyan. On the complexity of dualization of monotone disjunctive normal forms. *Journal of Algorithms*, 21:618-628, 1996.
- G. Grätzer Lattice theory: foundation. Springer Science & Business Media, 2011.

- P. Hammer, A. Kogan Quasi-Acyclic Propositional Horn Knowledge Bases: Optimal Compression. IEEE Transactions on knowledge and data engineering, 7 :751–762, 1995.
- H. Hiroshi and T. Oki
 A compact representation for minimizers of k-submodular functions. Journal of Combinatorial Optimization, 36 :709-741, 2018.
- R. Khardon. Translating between Horn Representations and their Characteristic Models. Journal of Artificial Intelligence Research, 3:349-372, 1995.
- D. Kavvadias, M. Sideri, and E. Stavropoulos Generating all maximal models of a Boolean expression. Information Processing Letters, 74:157-162, 2000.
- D. Johnson, M. Yannakakis, and C. Papadimitriou. On Generating All Maximal Independent Sets. Information Processing Letters, 27 :119–123, 1988.
- H. Mannila, K.-J. Räihä. The design of relational databases. Addison-Wesley Longman Publishing Co., Inc., 1992.
- M. Wild. The Joy of Implications, Aka Pure Horn Formulas: Mainly a Survey. Theoretical Computer Science, 658 :264-292, 2017.
- M. Wild. Computations with Finite Closure Systems and Implications. Springer LNCS, 959, 1995.

Appendix ▷ Beyond acyclic splits

- universe $V = V_1 \cup V_2$ with: • $V_1 = \{u_1, ..., u_n, v_1, ..., v_n, x\}, V_2 = \{u'_1, ..., u'_n, v'_1, ..., v'_n\}, n \in \mathbb{N}$
- Σ over V with split (V_1, V_2) :
 - $\circ \Sigma[V_1] = \{u_i v_i \to x \mid 1 \le i \le n\}, \Sigma[V_2] = \emptyset$
 - ο Σ[V₁, V₂] = { $u_i \to u'_i \mid 1 \le i \le n$ } ∪ { $v_i \to v'_i \mid 1 \le i \le n$ } ∪{A → V₁ | A ⊆ V₂, |A| = 3}

Appendix ▷ Beyond acyclic splits

