Algorithms on closure systems and their representations

Simon Vilmin
LIMOS, CNRS, Université Clermont Auvergne

December 13, 2021

Committee	Kira	ADARICHEVA	Reviewer
	Karell	BERTET	Reviewer
	Sergeï	KUZNETSOV	Reviewer
	Arnaud	MARY	Examiner
	Jean-Marc	PETIT	Examiner
	Lhouari	Nourine	Advisor

Introduction \triangleright Back to school

- Initial motivation: Knowledge Space Theory [Doignon, Falmagne, 1985].
- Some questions of an automated test:

1. Graphically solve $4 x^{2}-3 x+2=0$.
2. Figure out $\frac{\sqrt{4} \times \sqrt{9}}{3}-\frac{6 \times 7}{\sqrt{144}}$.
3. Compute the discriminant of $3 x^{2}-x+8$.
4. Study the polynomial $7 x^{2}+11 x-5$.

- Each question corresponds to a problem or item:

1. Graphical resolution.
2. Arithmetic.
3. Formula of discriminant.
4. Study of a 2nd order polynomial.

Introduction \triangleright Time for results!

	1	2	3	4
Wolf	\times			
Lil		\times	\times	
Lazuli		\times	\times	\times
Folavril	\times	\times		\times
Dupont		\times		

- Some students took the test!
- Lazuli masters item 3.
- $\{2,3\}$ is the knowledge state of Lil.

Introduction \triangleright Knowledge spaces

- Knowledge space \mathcal{K} over a (finite) collection of items V :

Introduction \triangleright Knowledge spaces and closure systems

Definition $>$ Closure system

Closure system $\mathcal{C} \subseteq \mathbf{2}^{V}$ over V:

- Contains V.
- Closed by intersection: $C_{1}, C_{2} \in \mathcal{C}$ entails $C_{1} \cap C_{2} \in \mathcal{C}$.

- Sets in \mathcal{C} are closed sets.
- (\mathcal{C}, \subseteq) is a (closure) lattice.
- Induces a closure operator ϕ :
- $\phi(X)$: minimal closed set including X.
- Closure system = complement of Knowledge space!
- \mathcal{C} standard: $\phi(v) \backslash\{v\} \in \mathcal{C}$ for each $v \in V$.
(\mathcal{C}, \subseteq)

Introduction \triangleright Closure systems in computer science

- Closure systems are ubiquitous ..
- Knowledge Space Theory (KST),
- Formal Concept Analysis (FCA),
- Propositional logic,
- Argumentation theory,
- Databases,
- ...
- ... but they have HUGE size ...
- If V has n elements, \mathcal{C} can have 2^{n} closed sets!
- ... and can be hard to understand:
- In KST: asking teachers to provide raw knowledge states is impractical.
- We need implicit representations!

Introduction \triangleright Implications

Definition > Implications

- Implication: expression $A \rightarrow B$, where $A, B \subseteq V$.
- Implicational base: set Σ of implications.
- "If the students fail the items in A, they will fail the items in B".
- Σ represents a unique closure system \mathcal{C}.
- \mathcal{C} can be represented by several (equivalent) Σ.

Introduction \triangleright Meet-irreducible elements

Definition $>$ Meet-irreducible elements

Closure system \mathcal{C} over V:

- $M \in \mathcal{C} \backslash\{V\}$ meet-irreducible if $M=C_{1} \cap C_{2}$ implies $M=C_{1}$ or $M=C_{2}$, $C_{1}, C_{2} \in \mathcal{C}$.
- \mathcal{M} collection of all meet-irreducible elements of \mathcal{C}.
- \mathcal{C} fully recovered from \mathcal{M} by taking intersections.
- \mathcal{M} is the "core" of \mathcal{C}.
- $M \in \mathcal{M}$ iff unique cover.

Introduction \triangleright Pros and cons

Question	Σ	\mathcal{M}	\mathcal{C}
is v in a min. generator of u ?	X	\checkmark	\checkmark
is P pseudo-closed?	\checkmark	X	\checkmark
is \mathcal{C} join-semidistributive?	$?$	\checkmark	\checkmark
Relative size			
size of ... w.r.t. Σ	-	$\exp (\|\Sigma\|)$	$\exp (\|\Sigma\|)$
size of ... w.r.t. \mathcal{M}	$\exp (\|\mathcal{M}\|)$	-	$\exp (\|\mathcal{M}\|)$
size of ... w.r.t. \mathcal{C}	$\leq\|\mathcal{C}\| \times\|\mathcal{V}\|$	$\leq\|\mathcal{C}\|$	-

Polynomial
NP-complete

Introduction \triangleright Context in a slide

First problem - Translating between the representations of a closure system.

Translation \triangleright Travelling between the representations

Translation \triangleright From Σ to \mathcal{M}

Problem • Enum. Meet-IRr. ELEMENTS (CCM)

- Input: an implicational base Σ for a closure system \mathcal{C} over V.
- Output: the meet-irreducible \mathcal{M} of \mathcal{C}.
- Surveys by [Bertet et al., 2018], [Wild, 2017].
- Hardness results:
- Unknown complexity.
- Harder than hypergraph dualization (MISEnum), [Khardon, 1995].
- Enumerating co-atoms is intractable (dualization), [Kavvadias et al., 2000].
- Positive results:
- General (exponential) algorithms [Mannila, Räihä, 1992], [Wild, 1995].
- Tractable cases: meet-semidistributive, types of convex geometries [Beaudou et al., 2017], [Defrain, Nourine, V., 2021].

Translation \triangleright Split

- Strategy:
- Hierarchical decomposition of Σ.
- Recursive construction of \mathcal{M}.
Σ implicational base over V :
- Split of Σ : bipartition $\left(V_{1}, V_{2}\right)$ of V such that $A \subseteq V_{1}$ or $A \subseteq V_{2}$ for every $A \rightarrow B \in \Sigma$.
- Split $\left(V_{1}, V_{2}\right)$ partitions Σ :
- $\Sigma\left[V_{1}\right]$ implications included in V_{1}, with induced $\mathcal{C}_{1}, \mathcal{M}_{1}$.
- $\Sigma\left[V_{2}\right]$ implications included in V_{2}, with induced $\mathcal{C}_{2}, \mathcal{M}_{2}$.
- $\Sigma\left[V_{1}, V_{2}\right]$ implications from V_{1} to V_{2} or from V_{2} to V_{1}.

Translation \triangleright Split operation

Translation \triangleright Recognizing splits

Σ has a split $\left(V_{1}, V_{2}\right)$ if and only if it is not premise-connected.

Translation \triangleright Hierarchical Decomposition

Theorem $>$ Nourine, V .
Let Σ be an implicational base over V. A Σ-tree can be computed in polynomial time and space in the size of Σ, if it exists.

Translation \triangleright Back to closure systems and CCM

Translation \triangleright Back to closure systems and CCM

- H-decomposition of Σ implies H -decomposition of \mathcal{C}.

Translation \triangleright Back to closure systems and CCM

Translation \triangleright Back to closure systems and CCM

Observation \downarrow Closed sets

- $\mathcal{C} \subseteq \mathcal{C}_{1} \times \mathcal{C}_{2}$.

Translation \triangleright Constructing \mathcal{C}, \mathcal{M} with empty split

Translation \triangleright Acyclic split

Definition $>$ Acyclic split

Σ an implicational base over V :

- Acyclic split of Σ : split $\left(V_{1}, V_{2}\right)$ s.t. $A \subseteq V_{1}$ for each $A \rightarrow B \in \Sigma\left[V_{1}, V_{2}\right]$.

Cyclic split

Acyclic split

Translation \triangleright Constructing \mathcal{C} with acyclic split

Translation \triangleright Running example

Translation \triangleright Constructing \mathcal{M}

- Case 1: $V_{2} \subseteq M:$
- $C \in \operatorname{Ext}\left(V_{2}\right)$ iff $C=C_{1} \cup V_{2} \quad\left(C_{1} \in \mathcal{C}_{1}\right)$.
- $M \in \mathcal{M}$ iff $M=M_{1} \cup V_{2}\left(M_{1} \in \mathcal{M}_{1}\right)$.
- Case 2: $V_{2} \nsubseteq M$:
- $M \in \operatorname{Ext}\left(M_{2}\right), M_{2} \in \mathcal{M}_{2}$ (increasing extensions).
- $M \in \max \left(\operatorname{Ext}\left(M_{2}\right)\right)$ for some $M_{2} \in \mathcal{M}_{2}$.
- $M \in \mathcal{M}$ iff $M \in \max \left(\operatorname{Ext}\left(M_{2}\right)\right) \quad\left(M_{2} \in \mathcal{M}_{2}\right)$.

Translation \triangleright Constructing \mathcal{M}

Theorem \downarrow Nourine, V .

Let Σ be an implicational base over V with acyclic split $\left(V_{1}, V_{2}\right)$. Then $|\mathcal{M}| \geq$ $\left|\mathcal{M}_{1}\right|+\left|\mathcal{M}_{2}\right|$ and:

$$
\mathcal{M}=\left\{M_{1} \cup V_{2} \mid M_{1} \in \mathcal{M}_{1}\right\} \cup\left\{C \in \max \left(\operatorname{Ext}\left(M_{2}\right)\right) \mid M_{2} \in \mathcal{M}_{2}\right\}
$$

Translation \triangleright Running example

Translation \triangleright Algorithm for CCM

Algorithm FindMeet(Σ, V)
Find an acyclic split (V_{1}, V_{2}) of Σ
If there is none:
| Compute \mathcal{M} with another algorithm

- Beware:

Else:
$\mathcal{M}_{1}=\operatorname{FindMeet}\left(\Sigma\left[V_{1}\right], V_{1}\right)$
$\mathcal{M}_{2}=\operatorname{FindMeet}\left(\Sigma\left[V_{2}\right], V_{2}\right)$
$\mathcal{M}=\left\{M_{1} \cup V_{2} \mid M_{1} \in \mathcal{M}_{1}\right\}$
For each $M_{2} \in \mathcal{M}_{2}$:
$\mathcal{M}=\mathcal{M} \cup \max \left(\operatorname{Ext}\left(M_{2}\right)\right)$

Return \mathcal{M}

1. Size of $\mathcal{M}_{1}, \mathcal{M}_{2}$?
2. Complexity of ComputeMeet?
3. Complexity of finding extensions.

Translation \triangleright Complexity of computing maximal extensions

Problem > Computing Maximal Extension (MaxExt)

- Input: implicational base Σ with acyclic split $\left(V_{1}, V_{2}\right), \mathcal{M}_{1}$ (resp. \mathcal{M}_{2}) the meet-irreducible elements associated to $\Sigma\left[V_{1}\right]$ (resp. $\Sigma\left[V_{2}\right]$), a closed set C_{2} of $\Sigma\left[V_{2}\right]$.
- Output: $\max \left(\operatorname{Ext}\left(C_{2}\right)\right)$.
- $\max \left(\operatorname{Ext}\left(\mathcal{C}_{2}\right)\right)$ has a dual antichain in \mathcal{C}_{1} coded by $\Sigma\left[V_{1}, V_{2}\right]$.
- MAXEXT is then equivalent to dualization with \mathcal{M} and Σ.
- If $\Sigma\left[V_{1}\right]=\emptyset$, MAXEXT is equivalent to MISEnum.

Translation \triangleright Applications

Corollary - Applications

Let Σ be an implicational base over V. Assume there exists a full partition V_{1}, \ldots, V_{k} of V such that for every implication $A \rightarrow b \in \Sigma, A \subseteq V_{i}$ and $b \in V_{j}$ for some $1 \leq i<j \leq k$. Then CCM can be solved in output-quasipolynomial time.

- Particular case of acyclic convex geometry [Adaricheva, 2017], [Hammer, Kogan, 1995].
- Generalizes ranked convex geometry [Defrain, Nourine, V., 2021], where CCM is equivalent to MISENuM.
- Also works for "simple closure systems" (diamonds, pentagons, etc).

Translation \triangleright Summary and perspectives

- Problem:
- CCM: enumerating meet-irreducible elements from implications.
- Unknown complexity, harder than MISENUM.
- Results:
- (Acyclic) split operation.
- Hierarchical decomposition of Σ, recursive construction of \mathcal{M}.
- New tractable cases (output-quasipolynomial time) in acyclic convex geometries.
- Further research:
- Recognition of an acyclic split from \mathcal{M} ?
- Generalization to "simple" non-acyclic splits?
- Complexity of CCM in (acyclic) convex geometries?

Second problem - Forbidden pairs in closure systems

Forbidden pairs \triangleright Dualization and forbidden sets

- Closure system \mathcal{C} (given by Σ or \mathcal{M}), forbidden sets $\mathcal{F}=\{134,15,24\}$.
- 1 is lower-admissible : does not contain a set in \mathcal{F}.
- 12 is lower-preferred : inclusion-wise max. lower-admissible.

Forbidden pairs \triangleright The hardness of dualization $\operatorname{DUAL}(\alpha)$

Complexity of \mathcal{F}

\square
\square Quasi-poly \square Intractable \square Unknown

Forbidden pairs \triangleright The problem ELP-P (α)

Definition $>$ lower-preferred closed sets

\mathcal{C} closure system over V, family \mathcal{F} over V of forbidden pairs for \mathcal{C} :

- Lower-admissible if $F \nsubseteq C$ for each $F \in \mathcal{F}$.
- Lower-preferred if inclusion-wise max. lower-admissible.

Problem - Enum. Lower-Pref. with forb. Pairs (ELP-P (α))

- Input: a representation α for a closure system \mathcal{C}, a family \mathcal{F} of forbidden pairs (both over V).
- Output: lower-preferred closed sets of \mathcal{C} w.r.t. \mathcal{F}.

Forbidden pairs \triangleright Other applications

- Models inconsistency:
- Poset + forbidden pairs: representation for median semilattices [Barthélemy, Constantin, 1993].
o implications + forbidden pairs: representation for modular semilattices [Hirai, Nakashima, 2018].

Forbidden pairs \triangleright The complexity of $\operatorname{ELP}-\mathrm{P}(\alpha)$

Bool

Bool $=$ Boolean
D = Distributive
SD = Semidistributive
Ext = Extremal
M = Modular
SM = Semimodular
B = Bounded
CG = Convex Geometry

- Output-poly $\bullet \geq \operatorname{DUAL}(\alpha)$ in CG, B or D_{\vee}
- ELP-P(Σ) hard

Corollary Nourine, V.
The problem $\operatorname{ELP}-\mathrm{P}(\alpha)$ is intractable. Moreover, $\operatorname{ELP}-\mathrm{P}(\Sigma)$ is intractable in lower-bounded and join-extremal closure systems.

Definition $>$ Minimal Generator, Carathéodory number

\mathcal{C} (standard) closure system over V :

- $A \subseteq V$ minimal generator of $u \in V: u \in \phi(A)$ and $u \notin \phi\left(A^{\prime}\right), \forall A^{\prime} \subset A$.
- Carathéodory number $\operatorname{cc}(\mathcal{C})$ of \mathcal{C} : maximal size of a minimal generator.

Theorem $>$ Nourine, V .

The problem ELP-P (α) can be solved in:

- Output-polynomial time if $\mathrm{cc}(\mathcal{C}) \leq k$, for some constant $k \in \mathbb{N}$.
- Output-quasipolynomial time if $\mathrm{cc}(\mathcal{C}) \leq \log (|\mathrm{V}|)$.

Forbidden pairs \triangleright Tractable cases

- Closure systems where $\operatorname{cc}(\mathcal{C})$ is constant:

ideals of a poset cc $(\mathcal{C})=1$

convex subsets of a poset $\mathrm{CC}(\mathcal{C}) \leq 2$

geod. conv. of a chordal graph $\mathrm{CC}(\mathcal{C}) \leq 2$

- Biatomicity [Bennett, 1987] + Independence criterion [Grätzer, 2011].

Corollary 1 Nourine, V.
The problem $\operatorname{ELP-P(\alpha)}$ can be solved in output-quasipolynomial time in atomistic modular closure systems.

Forbidden pairs $\triangleright \operatorname{ELP}-P(\alpha)$: the big picture

- Output-poly
- Quasi-poly
- $\geq \operatorname{DUAL}(\alpha)$
- ELP-P(Σ) hard
- Further research:
- Complexity of $\operatorname{ELP}-\mathrm{P}(\alpha)$ in modular and extremal closure systems?
- Characterize the lattices where ELP-P $(\alpha) \equiv$ enumerate max. independent sets of a graph?

Conclusion \triangleright Summary and perspectives

- Context:
- Initial motivation from knowledge spaces (ProFan project).
- Theoretical study of closure systems and their representations.
- First problem - translating between the representations:
- Unknown complexity, harder than MISENUM.
- New tractable classes based on hierarchical decompositions of implications.
- (Not in this talk) previous work on ranked convex geometries.
- Second problem - closure systems with forbidden sets:
- Enumerating admissible and preferred closed sets.
- Hardness results for $\operatorname{ELP}-\mathrm{P}(\alpha)$ using $\operatorname{DuaL}(\alpha)$, tractable cases based on the Carathéodory number.
- (Not in this talk) results for forbidden supersets.
- Open questions:
- What is the complexity of CCM in acyclic convex geometries?
- Characterize the lattices where ELP-P $(\alpha) \equiv \max$. independent sets of a graph?

Conclusion \triangleright Productions

- Translation:
- The enumeration of meet-irreducible elements based on hierarchical decompositions of implicational bases. With Lhouari Nourine.
Submitted to Theoretical Computer Science and communicated at WEPA 2020, FCA4AI 2020, ICTCS 2020.
- Translating between the representations of a ranked convex geometry. With Oscar Defrain and Lhouari Nourine.
Published in Discrete Mathematics (2021) and communicated at WEPA 2019.
- Forbidden sets:
- Enumerating maximal consistent closed sets in closure systems. With Lhouari Nourine.
Published in Proceedings of ICFCA 2021 and communicated at ICFCA 2021.
- Other:
- Towards declarative comparabilities: application to functional dependencies. With Lhouari Nourine and Jean-Marc Petit.
Under review in Journal of Computer and System Sciences and communicated at BDA 2021.

Thank you for your attention!

Conclusion \triangleright References

- K. Adaricheva

Optimum Basis of Finite Convex Geometry.
Discrete Applied Mathematics, 230 :11-20, 2017.

- M. Babin, S. Kuznetsov

Dualization in lattices given by ordered sets of irreducibles.
Theoretical Computer Science, 658 :316-326, 2017.

- J-P. Barthélemy, J. Constantin

Median graphs, parallelism and posets.
Discrete Mathematics, 111 :49-63, 1993.

- L. Beaudou, A. Mary, and L. Nourine.

Algorithms for k-meet-semidistributive lattices.
Theoretical Computer Science, 658 :391-398, 2017.

- M.K. Bennett

Biatomic lattices.
Algebra Universalis, 24 :60-73, 1987.

- K. Bertet, C. Demko, and J.-F. Viaud, and C. Guérin.

Lattices, closures systems and implication bases: A survey of structural aspects and algorithms.
Theoretical Computer Science, 743 :93-109, 2018.

- O. Defrain, L. Nourine, T. Uno.

On the dualization in distributive lattices and related problems.
Discrete Applied Mathematics, 300 :85-96, 2021.

- O. Defrain, L. Nourine, S. Vilmin.

Translating between the representations of a ranked convex geometry.
Discrete Mathematics, 344 :112399, 2021.

- J.P. Doignon, J.C. Falmagne.

Spaces for the assessment of knowledge.
International journal of man-machine studies, 23(2) :175-196, 1985.

- T. Eiter, G. Gottlob, K. Makino.

New results on monotone dualization and generating hypergraph transversals.
SIAM Journal on Computing, 32 :514-537, 2003.

- K. Elbassioni.

Algorithms for dualization over products of partially ordered sets.
SIAM Journal on Discrete Mathematics, 23 :487-510, 2009.

- K. Elbassioni.

On dualization over distributive lattices.
arXiv preprint, arXiv:2006.15337, 1996.

- M. Fredman, L. Khachiyan.

On the complexity of dualization of monotone disjunctive normal forms.
Journal of Algorithms, 21 :618-628, 1996.

- G. Grätzer

Lattice theory: foundation.
Springer Science \& Business Media, 2011.

- P. Hammer, A. Kogan

Quasi-Acyclic Propositional Horn Knowledge Bases: Optimal Compression.
IEEE Transactions on knowledge and data engineering, 7 :751-762, 1995.

- H. Hiroshi and T. Oki

A compact representation for minimizers of k-submodular functions.
Journal of Combinatorial Optimization, 36 :709-741, 2018.

- R. Khardon.

Translating between Horn Representations and their Characteristic Models. Journal of Artificial Intelligence Research, 3 :349-372, 1995.

- D. Kavvadias, M. Sideri, and E. Stavropoulos

Generating all maximal models of a Boolean expression.
Information Processing Letters, 74 :157-162, 2000.

- D. Johnson, M. Yannakakis, and C. Papadimitriou. On Generating All Maximal Independent Sets.
Information Processing Letters, 27 :119-123, 1988.
- H. Mannila, K.-J. Räihä.

The design of relational databases.
Addison-Wesley Longman Publishing Co., Inc., 1992.

- M. Wild.

The Joy of Implications, Aka Pure Horn Formulas: Mainly a Survey.
Theoretical Computer Science, 658 :264-292, 2017.

- M. Wild.

Computations with Finite Closure Systems and Implications.
Springer LNCS, 959, 1995.

Appendix \triangleright Beyond acyclic splits

- universe $V=V_{1} \cup V_{2}$ with:
- $v_{1}=\left\{u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}, x\right\}, v_{2}=\left\{u_{1}^{\prime}, \ldots, u_{n}^{\prime}, v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}, n \in \mathbb{N}$
- Σ over V with split $\left(V_{1}, V_{2}\right)$:
- $\Sigma\left[V_{1}\right]=\left\{u_{i} v_{i} \rightarrow x \mid 1 \leq i \leq n\right\}, \Sigma\left[V_{2}\right]=\emptyset$
- $\Sigma\left[V_{1}, V_{2}\right]=\left\{u_{i} \rightarrow u_{i}^{\prime} \mid 1 \leq i \leq n\right\} \cup\left\{v_{i} \rightarrow v_{i}^{\prime} \mid 1 \leq i \leq n\right\} \cup\left\{A \rightarrow V_{1}\left|A \subseteq V_{2},|A|=3\right\}\right.$

Appendix \triangleright Beyond acyclic splits

