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Introduction . Back to school

• Initial motivation: Knowledge Space Theory [Doignon, Falmagne, 1985].

• Some questions of an automated test:
1. Graphically solve 4x2 − 3x+ 2= 0.

2. Figure out
√
4×
√
9

3 − 6×7√
144

.

3. Compute the discriminant of 3x2 − x+ 8.

4. Study the polynomial 7x2+ 11x− 5.

• Each question corresponds to a problem or item:
1. Graphical resolution.
2. Arithmetic.
3. Formula of discriminant.
4. Study of a 2nd order polynomial.
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Introduction . Time for results!

Wolf
Lil

Lazuli
Folavril
Dupont

1 2 3 4
×

× ×
× × ×

× × ×
×

• Some students took the test!

• Lazuli masters item 3.

• {2,3} is the knowledge state of Lil.
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Introduction . Knowledge spaces

• Knowledge space K over a (�nite) collection of items V:

◦ “No item should be a prerequisite”: ∅ is a knowledge state.

◦ The union of two knowledge states is again a knowledge state.

1 2

23

234124

∅

12

123

1234

Knowledge space K (ordered by ⊆)
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Introduction . Knowledge spaces and closure systems

De�nition I Closure system

Closure system C ⊆ 2V over V:
• Contains V.
• Closed by intersection: C1,C2 ∈ C entails C1 ∩ C2 ∈ C.

1 3

34

234134

∅

14

4

1234

(C,⊆)

æ(13)
• Sets in C are closed sets.
• (C,⊆) is a (closure) lattice.
• Induces a closure operator æ:
◦ æ(X): minimal closed set including X.

• Closure system = complement of
Knowledge space!

• C standard: æ(v)r {v} ∈ C for each v ∈ V.
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Introduction . Closure systems in computer science

• Closure systems are ubiquitous ...
◦ Knowledge Space Theory (KST),
◦ Formal Concept Analysis (FCA),
◦ Propositional logic,

◦ Argumentation theory,
◦ Databases,
◦ . . .

• ... but they have HUGE size ...
◦ If V has n elements, C can have 2n closed sets!

• ... and can be hard to understand:
◦ In KST: asking teachers to provide raw knowledge states is impractical.

• We need implicit representations!
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Introduction . Implications

De�nition I Implications

• Implication: expression A!B, where A,B ⊆ V.
• Implicational base: set Î of implications.

• “If the students fail the items in A, they will fail the items in B”.
• Î represents a unique closure system C.
• C can be represented by several (equivalent) Î.

1 3

34

234134

∅

14

4

1234

Î = {13!4,2!34}

1

2

3

4

æ(13)
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Introduction . Meet-irreducible elements

De�nition I Meet-irreducible elements

Closure system C over V:
• M ∈ C r {V} meet-irreducible if M= C1 ∩ C2 implies M= C1 or M= C2,
C1,C2 ∈ C.
• M collection of all meet-irreducible elements of C.

• C fully recovered fromM by taking
intersections.

• M is the “core” of C.

• M ∈M i� unique cover. 1 3

34

234134

∅

14

4

1234

M
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Introduction . Pros and cons

Î M
is v in a min. generator of u?

is P pseudo-closed?
7 3
3 7

is C join-semidistributive? 3?

Question

3
7 NP-complete

Polynomial

size of ... w.r.t. Î

size of ... w.r.t.M exp(|M|)
exp(|Î|)

C

≤ |C| × |V | ≤ |C|

exp(|Î|)
exp(|M|)

size of ... w.r.t. C

3
3

3
Relative size
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Introduction . Context in a slide

Closure system

Implications

Meet-irreducible

2!4,
2!3,

13!4,
. . .

1,14,234, . . .

Same knowledge,
Di�erent representations,
Two problems:
1. Translation task.
2. Forbidden pairs in C.
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First problem I Translating between the representations
of a closure system.



Translation . Travelling between the representations

output-poly

output-poly

NextClosure

NextClosure

check property

attribute incremental

???

ex
po
ne
nt
ia
l

bl
ow

up

Closure system

Implications

Meet-irreducible

2!4,
2!3,

13!4,
. . .

1,14,234, . . .
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Translation . From Î toM

Problem I Enum. Meet-irr. elements (CCM)

• Input: an implicational base Î for a closure system C over V.
• Output: the meet-irreducibleM of C.

• Surveys by [Bertet et al., 2018], [Wild, 2017].

• Hardness results:
◦ Unknown complexity.
◦ Harder than hypergraph dualization (MISEnum), [Khardon, 1995].
◦ Enumerating co-atoms is intractable (dualization), [Kavvadias et al., 2000].

• Positive results:
◦ General (exponential) algorithms [Mannila, Räihä, 1992], [Wild, 1995].
◦ Tractable cases: meet-semidistributive, types of convex geometries
[Beaudou et al., 2017], [Defrain, Nourine, V., 2021].
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Translation . Split

• Strategy:
◦ Hierarchical decomposition of Î.

◦ Recursive construction ofM.

De�nition I Split

Î implicational base over V:
• Split of Î: bipartition (V1,V2) of V such that A ⊆ V1 or A ⊆ V2 for every
A!B ∈ Î.

• Split (V1,V2) partitions Î:
◦ Î[V1] implications included in V1, with induced C1,M1.

◦ Î[V2] implications included in V2, with induced C2,M2.

◦ Î[V1,V2] implications from V1 to V2 or from V2 to V1.
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Translation . Split operation

5

7
4

6

3

1

2

8

9

Î[V1]

Î[V2]

Î[V1,V2]
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Translation . Recognizing splits

9

7
1

2

8

9

3
5

4

6

Premise-connected component

Proposition I Recognizing splits

Î has a split (V1,V2) if and only if it is not premise-connected.
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Translation . Hierarchical Decomposition

5
4

6

3

1

2

8

9

89!6,28!4,
4!3

7 56!7

7

89!2

45!612!3 ∅

8 93 6

4 51 2

∅∅

Î-tree

Theorem I Nourine, V.

Let Î be an implicational base over V. A Î-tree can be computed in poly-
nomial time and space in the size of Î, if it exists.
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Translation . Back to closure systems and CCM

1 2

4 5

6

3

∅

6

46 56

456

3

246 346

36

356 156

1345623456

123456

2456 14563456

Î =

12!3,
13!4,
23!5, 4!6

1!5,
2!4,

5!6,
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Translation . Back to closure systems and CCM

2!4,1!5,
13!4,23!5

3

12!3

3 6

4!6,5!6

1 2

4 5

6
1 2

∅

4 5

∅

• H-decomposition of Î implies H-decomposition of C.
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Translation . Back to closure systems and CCM

∅

6

46 56

456

∅

1 3

13

2

23

123

∅

6

46 56

456

3

246 346

36

356 156

1345623456

123456

2456 14563456

∅
∅

∅ ∅
∅∅

∅
∅

3
6

1 2

12
45

4 5
1 2

4 5

Algorithm FindMeet(Î, V)
Find a split (V1,V2) of Î

If there is none:
ComputeM with another algorithm

Else:
M1 = FindMeet(Î[V1],V1)

M2 = FindMeet(Î[V2],V2)

M = ComputeMeet(M1,M2, Î)

ReturnM
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Translation . Back to closure systems and CCM

6

456

∅

3

123

∅

6

46 56

456

36

123456

3456

C1

23456 13456

2456 1456

1

13

2

23

∅

46 56

3

246 346 356 156

C2

C

Observation I Closed sets

• C ⊆ C1 ×C2.
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Translation . Constructing C,M with empty split

C1
C2

V1 V2

V2

∅

∅

∅

V

C2 ∪ V1

C1

C1

C1

C2

V1

Extending C2

C2

with a copy of C1

M1

M1 ∪ V2

M2

M2

C1

Extending M2 with V1

M = {M1 ∪ V2 | M1 ∈M1}∪
{M2 ∪ V1 | M2 ∈M2}
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Translation . Acyclic split

De�nition I Acyclic split

Î an implicational base over V:
• Acyclic split of Î: split (V1,V2) s.t. A ⊆ V1 for each A!B ∈ Î[V1,V2].

3

1 2

4 5

6

1 2

4

6

3

5

Î[V2]

Î[V1]

Î[V1,V2]

Acyclic splitCyclic split
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Translation . Constructing C with acyclic split

C1
C2

V1 V2

V2

∅

∅

∅

V

C2

C built with

C2

Ext(C2)

Ext(∅)

Ext(V2)
C1

max(Ext(C2))

increasing extensions (grey �owers)

Ext(C2): closed sets C
s.t. C ∩ V2 = C2

Extensions
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Translation . Running example
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C2

C

Ext(56)
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Translation . ConstructingM

M

V2

C1

• Case 1: V2 ⊆ M :
◦ C ∈ Ext(V2) i� C = C1 ∪ V2 (C1 ∈ C1).
◦ M ∈M i� M = M1 ∪ V2 (M1 ∈M1).

• Case 2: V2 * M :
◦ M ∈ Ext(M2), M2 ∈M2 (increasing extensions).
◦ M ∈max(Ext(M2)) for some M2 ∈M2.
◦ M ∈M i� M ∈max(Ext(M2)) (M2 ∈M2).

M2

Ext(M2)
C1 ∪M2

M ′2

Ext(M ′2)

C1 ∪M ′2

C C1 ∪M2 max. ext of M2

C1 ∪M2 ⊂ C and M2 ∈M2
M ′2 ⊆ C ∩ V2
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Translation . ConstructingM

Theorem I Nourine, V.

Let Î be an implicational base over V with acyclic split (V1,V2). Then |M| ≥
|M1|+ |M2| and:

M= {M1 ∪ V2 |M1 ∈M1} ∪ {C ∈max(Ext(M2)) |M2 ∈M2}

M1 ∪ V2

max(Ext(M2))

∅

M2

V2

V
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Translation . Running example

6
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∅
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C2

C
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Translation . Algorithm for CCM

Algorithm FindMeet(Î, V)

Find an acyclic split (V1,V2) of Î
If there is none:

ComputeM with another algorithm
Else:

M1 = FindMeet(Î[V1],V1)
M2 = FindMeet(Î[V2],V2)

M =M∪max(Ext(M2))

ReturnM

M = {M1 ∪ V2 | M1 ∈M1}
For each M2 ∈M2:

• Beware:
1. Size ofM1,M2? 3

2. Complexity of ComputeMeet?

3. Complexity of �nding
extensions.
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Translation . Complexity of computing maximal extensions

Problem I Computing Maximal Extension (MaxExt)

• Input: implicational base Î with acyclic split (V1,V2),M1 (resp.M2)
the meet-irreducible elements associated to Î[V1] (resp. Î[V2]), a
closed set C2 of Î[V2].

• Output: max(Ext(C2)).

• max(Ext(C2)) has a dual antichain in C1 coded by Î[V1,V2].

• MaxExt is then equivalent to dualization withM and Î.

• If Î[V1] = ∅, MaxExt is equivalent to MISEnum.
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Translation . Applications

Corollary I Applications

Let Î be an implicational base over V. Assume there exists a full partition
V1, . . . ,Vk of V such that for every implication A!b ∈ Î, A ⊆ Vi and b ∈ Vj
for some 1 ≤ i < j ≤ k. Then CCM can be solved in output-quasipolynomial
time.

• Particular case of acyclic convex geometry [Adaricheva, 2017],
[Hammer, Kogan, 1995].

• Generalizes ranked convex geometry [Defrain, Nourine, V., 2021], where CCM is
equivalent to MISEnum.

• Also works for “simple closure systems” (diamonds, pentagons, etc).
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Translation . Summary and perspectives

• Problem:
◦ CCM: enumerating meet-irreducible elements from implications.

◦ Unknown complexity, harder than MISEnum.

• Results:
◦ (Acyclic) split operation.

◦ Hierarchical decomposition of Î, recursive construction ofM.

◦ New tractable cases (output-quasipolynomial time) in acyclic convex geometries.

• Further research:
◦ Recognition of an acyclic split fromM?

◦ Generalization to “simple” non-acyclic splits?

◦ Complexity of CCM in (acyclic) convex geometries?
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Second problem I Forbidden pairs in closure systems



Forbidden pairs . Dualization and forbidden sets

∅

12 13 14 4534

234

2345

145134

1234

12345

1 2 3 4

lower-preferred

• Closure system C (given by Î orM), forbidden sets F = {134,15,24}.
• 1 is lower-admissible : does not contain a set in F .
• 12 is lower-preferred : inclusion-wise max. lower-admissible.
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Forbidden pairs . The hardness of dualization Dual(Ó)

Complexity of C

Complexity of F

any F

pairs

Bool/2V D

Johnson et al., 1988

Eiter et al., 2003

Fredman, Khachiyan, 1996

Kavvadias et al., 2000

Elbassioni, 2020

Defrain et al., 2021

Elbassioni, 2009

any C

Kavvadias et al., 2000 (Î)

Babin, Kuznetsov, 2017 (M)

What happens here ???

Output-poly Quasi-poly Intractable Unknown
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Forbidden pairs . The problem ELP-P(Ó)

De�nition I lower-preferred closed sets

C closure system over V, family F over V of forbidden pairs for C:
• Lower-admissible if F * C for each F ∈ F .
• Lower-preferred if inclusion-wise max. lower-admissible.

Problem I Enum. Lower-Pref. with forb. Pairs (ELP-P(Ó))

• Input: a representation Ó for a closure system C, a family F of
forbidden pairs (both over V).

• Output: lower-preferred closed sets of C w.r.t. F .

• Ó: implicational base Î or meet-irreducible elementsM
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Forbidden pairs . Other applications

• Models inconsistency:
◦ Poset + forbidden pairs: representation for median semilattices
[Barthélemy, Constantin, 1993].

◦ implications + forbidden pairs: representation for modular semilattices
[Hirai, Nakashima, 2018].
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Forbidden pairs . The complexity of ELP-P(Ó)

Bool

D

CGM B ExtD∨

SD

UB LB

SD∨SD∧USM Ext∧ LSM Ext∨

Output-poly ≥ Dual(Ó) in CG, B or D∨ ELP-P(Î) hard

Bool = Boolean
D = Distributive

Ext = Extremal
M = Modular

B = Bounded
CG = Convex Geometry

SD = Semidistributive

SM = Semimodular

Corollary I Nourine, V.

The problem ELP-P(Ó) is intractable. Moreover, ELP-P(Î) is intractable in
lower-bounded and join-extremal closure systems.
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Forbidden pairs . Carathéodory number

De�nition I Minimal Generator, Carathéodory number

C (standard) closure system over V:
• A ⊆ V minimal generator of u ∈ V: u ∈ æ(A) and u < æ(A′), ∀A′ ⊂ A.
• Carathéodory number cc(C) of C: maximal size of a minimal
generator.

Theorem I Nourine, V.

The problem ELP-P(Ó) can be solved in:
• Output-polynomial time if cc(C) ≤ k, for some constant k ∈�.
• Output-quasipolynomial time if cc(C) ≤ log(|V|).
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Forbidden pairs . Tractable cases

• Closure systems where cc(C) is constant:

a

b

ideals of a poset

cc(C) = 1
convex subsets of a poset

cc(C) ≤ 2
geod. conv. of a chordal graph convex hull in �

k

cc(C) = k + 1cc(C) ≤ 2

• Biatomicity [Bennett, 1987] + Independence criterion [Grätzer, 2011].

Corollary I Nourine, V.

The problem ELP-P(Ó) can be solved in output-quasipolynomial time in
atomistic modular closure systems.

Simon Vilmin - Algorithms on closure systems and their representations - Dec. 2021 - 37/40



Forbidden pairs . ELP-P(Ó): the big picture

Bool

At. M
D

CGM B ExtD∨

SD

UB LB

SD∨SD∧USM Ext∧ LSM Ext∨

CG,cc(C) ≤ k

Output-poly Quasi-poly ≥ Dual(Ó) ELP-P(Î) hard
in D∨, B, or CG

• Further research:
◦ Complexity of ELP-P(Ó) in modular and extremal closure systems?
◦ Characterize the lattices where ELP-P(Ó) ≡ enumerate max. independent sets of a
graph?
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Conclusion . Summary and perspectives

• Context:
◦ Initial motivation from knowledge spaces (ProFan project).
◦ Theoretical study of closure systems and their representations.

• First problem – translating between the representations:
◦ Unknown complexity, harder than MISEnum.
◦ New tractable classes based on hierarchical decompositions of implications.
◦ (Not in this talk) previous work on ranked convex geometries.

• Second problem – closure systems with forbidden sets:
◦ Enumerating admissible and preferred closed sets.
◦ Hardness results for ELP-P(Ó) using Dual(Ó), tractable cases based on the
Carathéodory number.
◦ (Not in this talk) results for forbidden supersets.

• Open questions:
◦ What is the complexity of CCM in acyclic convex geometries?
◦ Characterize the lattices where ELP-P(Ó) ≡ max. independent sets of a graph?
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Conclusion . Productions

• Translation:
◦ The enumeration of meet-irreducible elements based on hierarchical decompositions
of implicational bases. With Lhouari Nourine.
Submitted to Theoretical Computer Science and communicated at WEPA 2020, FCA4AI
2020, ICTCS 2020.

◦ Translating between the representations of a ranked convex geometry. With Oscar
Defrain and Lhouari Nourine.
Published in Discrete Mathematics (2021) and communicated at WEPA 2019.

• Forbidden sets:
◦ Enumerating maximal consistent closed sets in closure systems. With Lhouari
Nourine.
Published in Proceedings of ICFCA 2021 and communicated at ICFCA 2021.

• Other:
◦ Towards declarative comparabilities: application to functional dependencies. With
Lhouari Nourine and Jean-Marc Petit.
Under review in Journal of Computer and System Sciences and communicated at BDA
2021.
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Thank you for your attention!



Conclusion . References

I K. Adaricheva
Optimum Basis of Finite Convex Geometry.
Discrete Applied Mathematics, 230 :11-20, 2017.

I M. Babin, S. Kuznetsov
Dualization in lattices given by ordered sets of irreducibles.
Theoretical Computer Science, 658 :316-326, 2017.

I J-P. Barthélemy, J. Constantin
Median graphs, parallelism and posets.
Discrete Mathematics, 111 :49-63, 1993.

I L. Beaudou, A. Mary, and L. Nourine.
Algorithms for k-meet-semidistributive lattices.
Theoretical Computer Science, 658 :391-398, 2017.

I M.K. Bennett
Biatomic lattices.
Algebra Universalis, 24 :60-73, 1987.

I K. Bertet, C. Demko, and J.-F. Viaud, and C. Guérin.
Lattices, closures systems and implication bases: A survey of structural aspects and algorithms.
Theoretical Computer Science, 743 :93-109, 2018.

I O. Defrain, L. Nourine, T. Uno.
On the dualization in distributive lattices and related problems.
Discrete Applied Mathematics, 300 :85–96, 2021.



I O. Defrain, L. Nourine, S. Vilmin.
Translating between the representations of a ranked convex geometry.
Discrete Mathematics, 344 :112399, 2021.

I J.P. Doignon, J.C. Falmagne.
Spaces for the assessment of knowledge.
International journal of man-machine studies, 23(2) :175-196, 1985.

I T. Eiter, G. Gottlob, K. Makino.
New results on monotone dualization and generating hypergraph transversals.
SIAM Journal on Computing, 32 :514-537, 2003.

I K. Elbassioni.
Algorithms for dualization over products of partially ordered sets.
SIAM Journal on Discrete Mathematics, 23 :487–510, 2009.

I K. Elbassioni.
On dualization over distributive lattices.
arXiv preprint, arXiv:2006.15337, 1996.

I M. Fredman, L. Khachiyan.
On the complexity of dualization of monotone disjunctive normal forms.
Journal of Algorithms, 21 :618-628, 1996.

I G. Grätzer
Lattice theory: foundation.
Springer Science & Business Media, 2011.



I P. Hammer, A. Kogan
Quasi-Acyclic Propositional Horn Knowledge Bases: Optimal Compression.
IEEE Transactions on knowledge and data engineering, 7 :751–762, 1995.

I H. Hiroshi and T. Oki
A compact representation for minimizers of k-submodular functions.
Journal of Combinatorial Optimization, 36 :709-741, 2018.

I R. Khardon.
Translating between Horn Representations and their Characteristic Models.
Journal of Arti�cial Intelligence Research, 3 :349-372, 1995.

I D. Kavvadias, M. Sideri, and E. Stavropoulos
Generating all maximal models of a Boolean expression.
Information Processing Letters, 74 :157-162, 2000.

I D. Johnson, M. Yannakakis, and C. Papadimitriou.
On Generating All Maximal Independent Sets.
Information Processing Letters, 27 :119–123, 1988.

I H. Mannila, K.-J. Räihä.
The design of relational databases.
Addison-Wesley Longman Publishing Co., Inc., 1992.

I M. Wild.
The Joy of Implications, Aka Pure Horn Formulas: Mainly a Survey.
Theoretical Computer Science, 658 :264-292, 2017.

I M. Wild.
Computations with Finite Closure Systems and Implications.
Springer LNCS, 959, 1995.



Appendix . Beyond acyclic splits

• universe V = V1 ∪ V2 with:
◦ V1 = {u1, . . . ,un,v1, . . . ,vn,x}, V2 = {u′1, . . . ,u

′
n,v′1, . . . ,v

′
n}, n ∈�

• Î over V with split (V1,V2):
◦ Î[V1] = {uivi!x | 1 ≤ i ≤ n}, Î[V2] = ∅
◦ Î[V1,V2] = {ui!u′i | 1 ≤ i ≤ n} ∪ {vi!v′i | 1 ≤ i ≤ n} ∪{A!V1 | A ⊆ V2, |A|= 3}

u1 v1 u2 v2

x

u′1 v′1 u′2 v′2



Appendix . Beyond acyclic splits

V1

∅

x

µn
1≤i {ui ,vi }

2V1rx 2V2

∅

V2

∅

x

|M1| = 2n + n

|M2| = 2n

|M| ≤ 8n4

V

⊆ V4

⊆ {x} × V4

C1

C2

C
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