

Translating between the representations of a ranked convex geometry

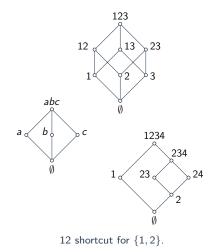
Oscar Defrain, Lhouari Nourine and Simon Vilmin.

LIMOS, UCA

WEPA - October, 2019

ranked convex geometry - 1/19 - WEPA - October, 2019

Underlying Structure



- \blacktriangleright X set of elements, 2^X all subsets of X,
- ▶ if $\mathcal{F} \subseteq 2^X$, (X, \mathcal{F}) is a *set system*.

Definition - closure system

The pair (X, \mathcal{F}) is a *closure system* if:

▶ $X \in \mathcal{F}$,

$$\blacktriangleright \ F_1, F_2 \in \mathfrak{F} \implies F_1 \cap F_2 \in \mathfrak{F}.$$

- ▶ $F \in \mathcal{F}$ is called *closed*,
- ▶ $\phi(A) = min_{\subseteq} \{F \in \mathcal{F} \mid A \subseteq F\}$ is the *closure* of *A*,
- ▶ uses in Computer Science: databases, Horn logic, data mining, ...

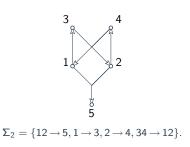
- ▶ Problem: a system (X, \mathfrak{F}) requires large amount of space.
- ▶ Solution: use implicit representations of (X, 𝔅):
 ▷ rules allowing or not sets in 𝔅,
 - **0**
 - \triangleright a minimum generating subset of \mathcal{F} .

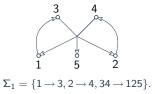
Implications

Definition - Implicational base

An *implicational base* is a pair (X, Σ) with :

- ▶ groundset X,
- ▶ Σ a set of *implications* $A \rightarrow B$, $A, B \subseteq X$.



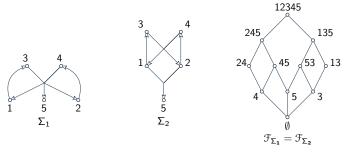


- ▶ Intuition behind implication $A \rightarrow B$: "we cannot have A without B",
- ▶ $F \subseteq X$ satisfies $A \rightarrow B$ if $A \subseteq F$, then $B \subseteq F$,
- ▶ $\mathcal{F}_{\Sigma} = \{F \subseteq X \mid X \text{ satisfies } \Sigma\},\$
- also known as : directed hypergraph, functional dependencies, Horn clauses, ...

Implications

Theorem (folklore)

- ► $(X, \mathcal{F}_{\Sigma})$ is a closure system,
- every closure system arises from some implicational base (X, Σ) .

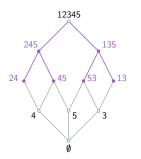


Beware ! The correspondence is not one-to-one !

Generating Subset

Definition - irreducible element

For a closure system (X, \mathcal{F}), $M \in \mathcal{F}$ is a *(meet-)irreducible element* if for all $F_1, F_2 \in \mathcal{F}$: $F_1 \cap F_2 = M \implies M = F_1$ or $M = F_2$.



- ▶ \mathcal{M} irreducible elements of \mathcal{F} ,
- ► M ∈ M iff it has a *unique* up successor in the diagram,
- ► any F ∈ 𝔅 \ 𝔅 is the intersection of some irreducible ⇒ 𝔅 generates 𝔅,
- known as: characteristic models, MAX-sets, copoints, ...

Problem - Computing Characteristic Models (CCM)

Input: an implicational base (X, Σ) .

Output: the set \mathcal{M} of irreducible elements of $(X, \mathcal{F}_{\Sigma})$.

Problem - Structure Identification (SID)

Input: the set \mathcal{M} of irreducible elements of (X, \mathcal{F}) . Output: a *minimum* implicational base (X, Σ) such that $\mathcal{F}_{\Sigma} = \mathcal{F}$.

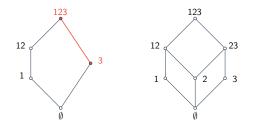
Known Results

- ▶ Still open problems,
- ▶ but harder than minimal transversals enumeration [Khardon, 1995],
- ▶ algorithms for classes of closure systems [Beaudou et al., 2017],
- algorithms for particular implicational bases [Korte et al., 2012], [Adaricheva, Nation, 2017].

Convex Geometries

Definition - Convex Geometry (CG)

A closure system (X, \mathcal{F}) is a *convex geometry* (CG) if it is strongly accessible, i.e.: $\forall F \in \mathcal{F}, \exists x \in X \setminus F, \text{ s.t. } F \cup \{x\} \in \mathcal{F}.$



- strong accessibility = choose elements of X one by one,
- ▶ seen in: learning spaces, antimatroids, social choice operators, ...

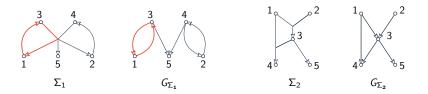
Acyclic convex geometries

Definition - implication graph

The *implication graph* $G_{\Sigma} = (X, E)$ of an implicational base (X, Σ) is a *directed* graph where $(a, b) \in E$ if there is $A \to B \in \Sigma$ such that $a \in A, b \in B$.

Definition - Acyclic implicational base

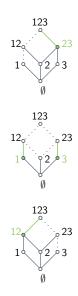
An implicational base (X, Σ) is *acyclic* if G_{Σ} does not have cycles.



Theorem (Wild, 94)

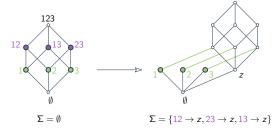
 (X, Σ) acyclic $\implies (X, \mathcal{F}_{\Sigma})$ convex geometry.

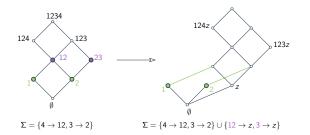
- Structural properties of \mathcal{M} :
 - ▷ for any $x \in X$, $max_{\subseteq} \{M \in \mathcal{F} \mid x \notin M\} \subseteq \mathcal{M}$,
 - $\triangleright\,$ in convex geometries, partition of $\mathcal M$!
 - ▷ suggests enumeration for each $x \in X$.
- Hardness bounds:
 - ▷ still *harder than* minimal transversals enumeration,
 - even harder than dualization in distributive closure systems [Defrain, Nourine, V., 2019],
 - ▷ is there an "easy" subclass in between ?



Dualization Parenthesis

- Minimal transversals : no constraints (Σ = ∅),
- hypergraph becomes implications,
- acyclic implicational system.





- ▶ generalization : constraints (Σ ≠ ∅),
- ▶ *unitary* implications,
- ▶ remains *acyclic*.

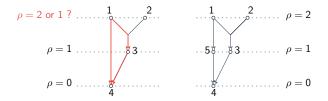
Ranked Acyclic System

Definition - rank function

A rank function on an implicational base (X, Σ) is a function $\rho : X \to \mathbb{N}$ such that: $A \to B \in \Sigma \implies \rho(a) = \rho(b) + 1$, for $a \in A, b \in B$.

Definition - ranked implicational base, ranked convex geometry

An implicational base (X, Σ) is *ranked* if it admits a rank function. The system $(X, \mathcal{F}_{\Sigma})$ is then called a *ranked convex geometry*.



Theorem (Defrain, Nourine, V., 2019)

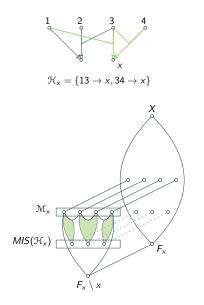
Let (X, Σ) be a ranked implicational base. There exists an output-quasi polynomial time algorithm for CCM with input (X, Σ) .

Theorem (Defrain, Nourine, V., 2019)

Let ${\mathcal M}$ be the set of irreducible elements of a ranked convex geometry. There exists an output-quasi polynomial time algorithm for SID with input ${\mathcal M}.$

CCM Algorithm

- $\blacktriangleright (X, \Sigma) \text{ a ranked base.}$
- Structural insights, $x \in X$:
 - $\triangleright \text{ hypergraph } \mathcal{H}_x = \{A \mathop{\rightarrow} x \mid A \mathop{\rightarrow} x \in \Sigma\},$
 - $\triangleright \mathcal{M}_x$ irreducible associated to x,
 - $\triangleright \mathcal{M}_x$ partitionned by $MIS(\mathcal{H}_x)$.
- Algorithm outline:
 - recursive application of minimal transversals enumeration, rank by rank,
 - $\triangleright~$ height of the recursive tree $\leq \rho$,
 - ▷ apply for all $x \in X$.



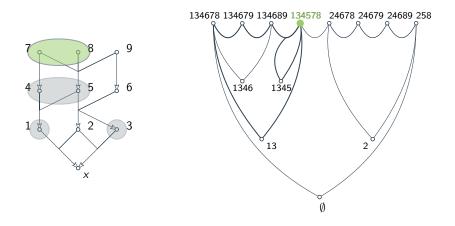
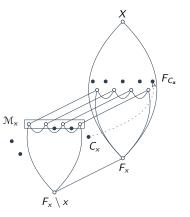


Figure: $\Sigma = \{7 \rightarrow 4, 789 \rightarrow 5, 9 \rightarrow 6, 45 \rightarrow 1, 56 \rightarrow 23, 12 \rightarrow x, 23 \rightarrow x\}$

SID Algorithm

- $\blacktriangleright \ {\mathcal M}$ of a ranked CG given.
- Structural insights:
 - $\triangleright C_x$ generates F_{C_x} ,
 - \triangleright for any $M_x \in \mathfrak{M}_x$, $F_{\mathcal{C}_x} \nsubseteq M_x \cup \{x\}$,
 - \triangleright F_{C_x} min for this property (*dualization*),
 - $\triangleright \ \Sigma = \{C_x \to x \mid x \in X\} \text{ is minimum.}$
- Algorithm outline, for $x \in X$:
 - \triangleright identify elements of C_x using \mathcal{M}_x ,
 - ▷ hypergraph based on $X \setminus M_x$ for $M_x \in \mathcal{M}_x$,
 - minimal transversal enumeration to find C_x's.



Conclusion

- ▶ What we discussed so far:
 - closure systems, their representations,
 - ▷ translating algorithms for *ranked* convex geometries (SID,CCM).
- Further questions:
 - \triangleright recognition of a ranked CG from \mathcal{M} ,
 - ▷ apply the algorithm to a *broader class* of CG.

Thank you for your attention !

References

K. Adaricheva and, J.B. Nation. Discovery of the D-basis in binary tables based on hypergraph dualization. Theoretical Computer Science, 658 :307-315, 2017.

- L. Beaudou, A. Mary, and L. Nourine. Algorithms for k-meet-semidistributive lattices. Theoretical Computer Science, 658 :391-398, 2017.
- O. Defrain, L. Nourine, and S. Vilmin. Translating between the representations of a ranked convex geometry. *Arxiv*, 1907.09433, 2019
- R. Khardon. Translating between Horn Representations and their Characteristic Models. Journal of Artificial Intelligence Research, 3 :349-372, 1995.
- B. Korte, L. Lovasz and R. Schrader Greedoids Springer Science & Business Media, 2012.
- ► M. Wild,

A Theory of Finite Closure Spaces Based on Implications Technische Hochshule Darmstadt