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Underlying Structure
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12 shortcut for {1, 2}.

I X set of elements, 2X all subsets of X,

I if F ⊆ 2X, (X,F) is a set system.

Definition - closure system

The pair (X,F) is a closure system if:
I X ∈ F,
I F1,F2 ∈ F =⇒ F1 ∩ F2 ∈ F.

I F ∈ F is called closed,
I φ(A) = min⊆{F ∈ F | A ⊆ F} is the

closure of A,
I uses in Computer Science: databases,

Horn logic, data mining, . . .
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General Problem

I Problem: a system (X,F) requires large amount of space.

I Solution: use implicit representations of (X,F):
. rules allowing or not sets in F,

. a minimum generating subset of F.
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Implications

Definition - Implicational base

An implicational base is a pair (X,Σ) with :
I groundset X,
I Σ a set of implications A!B, A,B ⊆ X.

51 2

43

Σ1 = {1! 3, 2! 4, 34! 125}.
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Σ2 = {12! 5, 1! 3, 2! 4, 34! 12}.

I Intuition behind implication A!B : "we
cannot have A without B",

I F ⊆ X satisfies A!B if A ⊆ F , then B ⊆ F ,

I FΣ = {F ⊆ X | X satisfies Σ},

I also known as : directed hypergraph,
functional dependencies, Horn clauses, . . .
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Implications

Theorem (folklore)

I (X,FΣ) is a closure system,
I every closure system arises from some implicational base (X,Σ).
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Beware ! The correspondence is not one-to-one !
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Generating Subset

Definition - irreducible element

For a closure system (X,F),M ∈ F is a (meet-)irreducible element if for all F1,F2 ∈ F:
I F1 ∩ F2 = M =⇒ M = F1 or M = F2.
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I M irreducible elements of F,
I M ∈M iff it has a unique up successor in the

diagram,
I any F ∈ F \M is the intersection of some

irreducible =⇒ M generates F,
I known as: characteristic models, MAX-sets,

copoints, . . .
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Enumeration problems

Problem - Computing Characteristic Models (CCM)

Input: an implicational base (X,Σ).
Output: the set M of irreducible elements of (X,FΣ).

Problem - Structure Identification (SID)

Input: the set M of irreducible elements of (X,F).
Output: a minimum implicational base (X,Σ) such that FΣ = F .
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Known Results

I Still open problems,

I but harder than minimal transversals enumeration [Khardon, 1995],

I algorithms for classes of closure systems [Beaudou et al., 2017],

I algorithms for particular implicational bases [Korte et al., 2012],
[Adaricheva, Nation, 2017].
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Convex Geometries

Definition - Convex Geometry (CG)

A closure system (X,F) is a convex geometry (CG) if it is strongly accessible, i.e.:
I ∀F ∈ F,∃x ∈ X \ F , s.t. F ∪ {x} ∈ F.
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I strong accessibility = choose elements of X one by one,
I seen in: learning spaces, antimatroids, social choice operators, . . .
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Acyclic convex geometries

Definition - implication graph

The implication graph GΣ = (X,E) of an implicational base (X,Σ) is a directed
graph where (a, b) ∈ E if there is A!B ∈ Σ such that a ∈ A, b ∈ B.

Definition - Acyclic implicational base

An implicational base (X,Σ) is acyclic if GΣ does not have cycles.

51 2

43

51 2

43 1 2

3

4 5

1 2

3

4 5

Σ1 GΣ1 Σ2 GΣ2

Theorem (Wild, 94)

(X,Σ) acyclic =⇒ (X ,FΣ) convex geometry.
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Why Acyclicity ?

I Structural properties of M:
. for any x ∈ X , max⊆{M ∈ F | x /∈ M} ⊆M,

. in convex geometries, partition of M !

. suggests enumeration for each x ∈ X .

I Hardness bounds:
. still harder than minimal transversals enumeration,

. even harder than dualization in distributive closure
systems [Defrain, Nourine, V., 2019],

. is there an "easy" subclass in between ?
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Dualization Parenthesis

I Minimal transversals : no
constraints (Σ = ∅),

I hypergraph becomes
implications,

I acyclic implicational
system.

Σ = ∅ Σ = {12 → z , 23 → z , 13 → z}
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I generalization :
constraints (Σ 6= ∅),

I unitary implications,
I remains acyclic.
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Ranked Acyclic System

Definition - rank function

A rank function on an implicational base (X,Σ) is a function ρ : X ! N such that:
A!B ∈ Σ =⇒ ρ(a) = ρ(b) + 1, for a ∈ A, b ∈ B.

Definition - ranked implicational base, ranked convex geometry

An implicational base (X,Σ) is ranked if it admits a rank function. The system
(X,FΣ) is then called a ranked convex geometry.
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Main algorithmic results

Theorem (Defrain, Nourine, V., 2019)

Let (X,Σ) be a ranked implicational base. There exists an output-quasi polynomial
time algorithm for CCM with input (X,Σ).

Theorem (Defrain, Nourine, V., 2019)

Let M be the set of irreducible elements of a ranked convex geometry. There exists
an output-quasi polynomial time algorithm for SID with input M.
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CCM Algorithm

I (X,Σ) a ranked base.

I Structural insights, x ∈ X :
. hypergraph Hx = {A! x | A! x ∈ Σ},
. Mx irreducible associated to x ,
. Mx partitionned by MIS(Hx ).

I Algorithm outline:
. recursive application of minimal
transversals enumeration, rank by rank,

. height of the recursive tree ≤ ρ,

. apply for all x ∈ X.
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Figure: Σ = {7! 4, 789! 5, 9! 6, 45! 1, 56! 23, 12! x , 23! x}
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SID Algorithm

I M of a ranked CG given.

I Structural insights:
. Cx generates FCx ,
. for any Mx ∈Mx , FCx * Mx ∪ {x},
. FCx min for this property (dualization),
. Σ = {Cx ! x | x ∈ X} is minimum.

I Algorithm outline, for x ∈ X :
. identify elements of Cx using Mx ,
. hypergraph based on X \Mx for Mx ∈Mx ,
. minimal transversal enumeration to find
Cx ’s.
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Conclusion

I What we discussed so far:
. closure systems, their representations,

. translating algorithms for ranked convex geometries (SID,CCM).

I Further questions:
. recognition of a ranked CG from M,

. apply the algorithm to a broader class of CG.

Thank you for your attention !
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