

Towards declarative comparabilities: application to functional dependencies.

LIRIS 2021

Martin Benito-Rodriguez, Gabriel Eychene, Lhouari Nourine, Jean-Marc Petit and Simon Vilmin.

LIMOS, UCA

July 2021

Introduction

r	A	В	С
t_1	1.4	F	73
t_2	1.5	F	null
t_3	3.2	М	72
t_4	3.5	F	76
t_5	40	F	100

"biased" functional dependencies

 $A \rightarrow BC$ $C \rightarrow AB$

Cannot find "real" dependencies

 $BC \rightarrow A$

A: triglyceride level (mmol/L) B: sex

C: waist size (cm)

In short

- ▶ Deciding that x = y is a tough problem:
 - ▶ depends on the context, types, units, ...
 - measuring similarity may not be expressive enough: what makes two values more or less similar?
 - equality impacts dependencies inference
- Implicit in topics such as:
 - ▶ Query answering [Libkin, 2016]
 - Inconsistent databases
- ▶ In fact:
 - only domain experts know about equality
 - but programmers have to implement it

Highlights

- ▶ Declarative framework which:
 - extends the relation schema;
 - > allows multiple definition of equality
- ▶ With a focus on:
 - ▶ functional dependencies,
 - prototypical implementation.

Framework in a nutshell

- ▶ Deciding equality is about:

 - interpreting comparabilities with true or false;

			1
r	Α	В	С
t_1	1.4	F	73
t_2	1.5	F	null
t_3	3.2	М	72
t ₄	3.5	F	76
t_5	40	F	100

		$t_1 = t_4$	$BC \rightarrow A$
	g ₀	X	X
interpretations	g_1	1	1
	g ₂	X	X

Some related works

- ► Approach of Fuzzy logic [Goguen, 1967]
- ► Truth values as lattices, e.g. Kleene's 3-valued logic [Libkin, 2016, Bolc, Borowik, 2013]
- ► Use of some (different) similarity functions [Caruccio et al., 2015, Baixeries et al, 2018, Bertossi et al., 2013]
- ▶ dealing with inconsistent data [Bertossi, 2011]

Appetizers: few notations

- ▶ See e.g. [Day, 1992], [Demetrovics et al., 1992]
- ▶ R a set of attributes (or relation schema),
- ▶ A functional dependency is an expression of the form $X \to Y$ where $X, Y \subseteq \mathbb{R}$ ▷ $Z \subset \mathbb{R}$ satisfies $X \to Y$ if $X \subset Z$ implies $Y \subset Z$.
 - \triangleright if Z_1 and Z_2 satisfy $X \rightarrow Y$, so does $Z_1 \cap Z_2$ (closure system).
 - $\triangleright \ \ \textit{closure} \ \ Z^+ = \{A \in \mathbb{R} \mid Z \to A \ \text{holds} \}.$
- ▶ Lattice L:
 - partially ordered set
 - ightharpoonup each pair $x,y\in\mathcal{L}$ has a least upper bound $x\vee y$ and a greatest lower bound $x\wedge y$

Starting point: attribute context

- ightharpoonup A truth lattice \mathcal{L}_A for an attribute A:
 - ▷ set of abstract values ordered as a lattice,
 - models a similarity-scale for pairs of attribute values;
- \triangleright A comparability function f_A
 - > maps pairs of attribute values to an abstract value,
 - \triangleright subsumes equality (but for null), i.e. $f_A(x,x)$ equals the top of \mathcal{L}_A if $x \neq \text{null}$.
- ▶ The pair $\{f_A, \mathcal{L}_A\}$ is the attribute context.
- ightharpoonup Combining attribute contexts we obtain the schema context $\{f_{\mathsf{R}},\mathcal{L}_{\mathsf{R}}\}$
 - \triangleright \mathcal{L}_R : collection of all possible *abstract tuples*, i.e, the product of abstract lattices, ordered component wise.
 - \triangleright $f_{R}(t_{i}, t_{j})$ component-wise comparison of the tuples t_{i}, t_{j} ,
 - ho $f_{\mathsf{R}}(r) = \{f_{\mathsf{R}}(t_i, t_i) \mid t_i, t_i \in r\}$ set of abstract tuples associated to r

Running example

$$f_A(x,y) = \begin{cases} good & \text{if } x = y \text{ or } x,y \in [0,2[\\ good \text{ or bad} & \text{if } x,y \in [2,5[,x \neq y\\ unknown & \text{if } (x,y) \text{ or } (y,x) \in [0,2[\times[2,5[\\ bad & \text{otherwise.} \end{cases}$$

$$f_B(x,y) = \begin{cases} true & \text{if } x = y \\ different & \text{otherwise.} \end{cases}$$

$$f_C(x,y) = \begin{cases} \textit{correct } (c) & \text{if } x = y \neq \textit{null } \text{ or } 70 \leq x, y \leq 80 \\ \textit{unknown } (u) & \text{if } x = \textit{null } \text{ or } y = \textit{null } \\ \textit{incorrect } (i) & \text{otherwise.} \end{cases}$$

Interpretations

- ▶ An attribute context interpretation h_A : $\mathcal{L}_A \to \{0,1\}$:
 - \triangleright semantic for equality on A
 - > surjective, differentiates equal and not equal: 1 to the greatest truth value, 0 to the least one
 - increasing: a truth value cannot be considered as less equal than any of its predecessors
- ► The schema interpretation g:
 - ▶ point-wise evaluation of attributes interpretations,
 - \triangleright maps each abstract tuple of \mathcal{L}_R to a binary word (equivalently a subset of R).

Running example

r	Α	В	С
t_1	1.4	F	73
t_2	1.5	F	null
t_3	3.2	М	72
t_4	3.5	F	76
t_5	40	F	100

$g_2(f_R(\ldots))$	Α	В	С
t_1, t_1	1	1	1
t_1, t_2	1	1	1
t_1, t_3	0	0	1
t_1, t_4	1	1	1
t_1, t_5	0	1	0

Pipeline

What about FDs?

- ightharpoonup Semantic of functional dependency $X \rightarrow Y$ smoothly adapted to this framework
- ▶ Intuition: when two tuples are "equal" on X, they must be on Y too
- ▶ Formally, for any tuples t_i and t_j , $X \subseteq g(f_R(t_i, t_j))$ implies $Y \subseteq g(f_R(t_i, t_j))$
- Problem:
 - \triangleright all the knowledge depends on the choice of g, not uniquely on r
 - ▶ what if no semantic for equality is given ?
- ▶ Idea: abstract tuples define some "abstract knowledge"!

Abstract lattice, abstract FDs

r	Α	В	С			A	В	С
t_1	1.4	F	73	-	t_1, t_1	g	t	с
t_2	1.5	F	null	f_R	t_1,t_2	g	t	и
<i>t</i> ₃	3.2	М	72					
t_4	3.5	F	76					
t_5	40	F	100		t_4,t_5	Ь	t	i

abstract tuples of $f_R(r)$

abstract lattice \mathcal{L}_r

Abstract lattice, abstract FDs

- ▶ Basically same intuition as classical functional dependencies (and agree sets [Beeri et al., 1984])!
- ightharpoonup Abstract lattice \mathcal{L}_r associated to r:
 - \triangleright start from $f_{\mathsf{R}}(r) = \{f_{\mathsf{R}}(t_i, t_i) \mid t_i, t_i \in r\}$
 - $\,\,{\scriptstyle{\triangleright}}\,\,$ close by the \wedge operation of $\mathcal{L}_R.$
- ► Abstract functional dependency:
 - \triangleright expression $x \rightarrow y$ based on abstract tuples
 - "Whenever the similarity of two tuples is above x, it is also above y"
- ▶ Represent abstract knowledge associated to *r*:
 - ightharpoonup r satisfies $x \to y$ if $x \le f_R(t_i, t_i)$ implies $y \le f_R(t_i, t_i)$ for any tuples t_i, t_i of r.
 - \triangleright r satisfies $x \rightarrow y$ if and only if \mathcal{L}_r satisfies $x \rightarrow y$.
 - ▷ no need of equality semantic.

Running example

- ▶ "A good or bad level of triglyceride should entail a correct waist size", modelled by $\langle gb, d, i \rangle \rightarrow \langle gb, d, c \rangle$.
- ▶ fails because of null value
- ▶ must be corrected to $\langle gb, d, i \rangle \rightarrow \langle gb, d, u \rangle$ to take null into account.

r	A	В	С
t_1	1.4	F	73
t_2	1.5	F	null
t_3	3.2	М	72
t_4	3.5	F	76
t_5	40	F	100

 $\langle gb,d,c\rangle \qquad \langle ut,c\rangle \qquad \langle g,t,u\rangle \qquad \langle gb,d,u\rangle \qquad \langle ud,c\rangle \qquad \langle ud,v\rangle \qquad \langle b,t,u\rangle \qquad \langle b,d,i\rangle \qquad \langle b,d,i\rangle$

closure properties entails $\langle gb, d, i \rangle \rightarrow \langle gb, d, u \rangle$

Interpreting abstract knowledge

Realities

- ▶ Problem: when applied to the abstract knowledge or r, a semantic for equality lays the ground for functional dependencies ... or NOT !!!
- ▶ Question: what kind of interpretation guarantees that, the interpretation of any possible abstract knowledge (i.e. any possible abstract lattice) gives a sound semantic for classical FDs (i.e. a closure system) ?
- ► Answer: lattice homomorphisms!

Theorem [Nourine et al. 2021]: Let \mathcal{C}_R be a schema context with at least 3 attributes, and let g be a schema interpretation. Then, $g(\mathcal{L})$ is a closure system for any \land -sublattice \mathcal{L} if and only if g is a \land -homomorphism.

▶ We call such interpretations realities

Realities, quite simply

- Hints to understand realities:
 - b "true and true should be true"
 - ▶ in each truth lattice, the family of truth values set to 1 has a unique minimal element
 - ▶ A reality is represented by an abstract tuple!

reality represented by $\langle u, t, c \rangle$

Abstract FDs, FDs and realities

▶ **Thought**: a reality g interprets \mathcal{L}_r in a suitable way for functional dependencies. Somehow, g "realizes" a part of the abstract knowledge of r.

▶ Idea 1:

- ightharpoonup A valid functional dependency X o Y reflects the structure of the interpretation of \mathcal{L}_r by g
- \triangleright thus, there should exist a valid abstract FD $x \rightarrow y$ in \mathcal{L}_r whose interpretation through g gives $X \rightarrow Y$.

▶ Idea 2:

- ightharpoonup A valid abstract DF $x \rightarrow y$ reflects a potential dependency between attributes of R
- \triangleright thus, there should exist a reality g in which this dependency is translated into a valid functional dependency $X \rightarrow Y$.

Abstract FDs, FDs and realities

Both ideas are true!!

Proposition [Nourine et al. 2021]: If $X \to Y$ is a valid FD in $g(\mathcal{L}_r)$, for a given reality g, there exists an abstract FD $x \to y$ such that g(x) = X, g(y) = Y and $x \to y$ is a valid abstract FD of \mathcal{L}_r .

Proposition [Nourine et al. 2021]: If $x \to y$ is a valid abstract FD in \mathcal{L}_r , there exists a reality g such that $g(x) \to g(y)$ is a valid functional dependency of $g(\mathcal{L}_r)$.

Possible, Certain FDs

- ▶ Numerous possible meanings of equality
- ▶ Sometimes, an FD $X \rightarrow Y$ may hold, sometimes not ...
- ▶ Thinking about *query answering* [Libkin, 2016] leads to the natural questions:
 - \triangleright Possible FD: is there a reality in which $X \rightarrow Y$ holds ?
 - \triangleright Certain FD: is it true that $X \rightarrow Y$ holds in any reality ?

Running example

	$AB \rightarrow A$	$C \rightarrow AB$	$BC \rightarrow A$
g ₀	✓	Х	Х
g_1	1	X	✓
g_2	1	X	X

Results in brief

Problem - Possible Functional Dependency (PFD)

- ▶ Input: a relation r over a schema context C_R (given), a FD $X \rightarrow Y$.
- ▶ Output: Yes if there exists a reality g in which $X \rightarrow Y$ is valid, No otherwise.

Problem - Certain Functional Dependency (CFD)

- ▶ Input: a relation r over a schema context C_R (given), a FD $X \rightarrow Y$.
- ▶ Output: Yes if $X \rightarrow Y$ holds in every reality, No otherwise.

Theorem [Nourine et al. 2021]: PFD and CFD can be solved in polynomial time.

Experiment Time !!!

Aim

- ▶ Declarative approach for schema contexts (DDL)
- ▶ Use realities in a query of the form:

```
SELECT * FROM r
WHERE r.A = 1.4 AND r.B = 'F' AND r.c = 74
USING REALITY gb, t, u;
```

Answering the query

SELECT * FROM r WHERE r.A = 1.4 AND r.B = 'F' AND r.c = 74 USING REALITY gb, t, u;

Prototype

- ▶ Implementation using SQL and PLSQL on PostGreSQL.
- ▶ Comparabilities and interpretations as functions

```
CREATE OR REPLACE FUNCTION f_B(x char, y char)
RETURNS bit AS $$ <code> $$ LANGUAGE sql;

CREATE OR REPLACE FUNCTION h_B(b bit)
RETURNS boolean AS $$ <code> $$ LANGUAGE sql;
```

- ▶ Experiment on SQLiteOnline with :
 - Our toy example
 - IRIS Dataset: without null, 4-valued abstract lattices, comparabilities based on the difference between two values

Results

SELECT *
FROM
WHERE

	Classic SQL		Framework	
	# tuples	run. time	# tuples	run. time
Toy example	/5		/5	
level = 5	0	0.035ms	0	0.045ms
level = 1.4	1	0.055ms	2	0.075ms
r.level = s.level	1	0.180ms	9	0.350ms
IRIS dataset	/150		/150	
sepal_l = 0	0	0.065ms	0	0.150ms
sepal_1 = 5	10	0.060ms	83	0.170ms
r.sepal_l = s.sepal_l	900	0.700ms	12820	25.000ms

Conclusion

- ▶ Problem:
 - Deciding equality is a hard task
 - ▶ left to programmer, meant to domain experts.
- ▶ Introduction of a framework:
 - ▶ based on comparabilities and interpretations (and realities)
 - > provide numerous semantics for equality, easy to declare.
- ► Highlights on:
 - > abstract functional dependencies, no need of hypothesis on equality
 - □ connections between realities and (abstract/possible/certain) FDs
 - Prototypical implementation
- ► Further research:
 - ▶ Relational algebra ? Covers of functional dependencies ?
 - ▶ Implementation and experiments with real data ?

Thank you for your attention!

References

- J. Baixeries, V. Codocedo, M. Kaytoue, A. Napoli Characterizing approximate-matching dependencies in formal concept analysis with pattern structures Discrete Applied Mathematics, 249:18-27, 2018.
- C. Beeri, M. Dowd, R. Fagin, R. Statman. On the structure of Armstrong relations for functional dependencies. *Journal of the ACM*, 31:30-46, 1984.
- L. Bertossi, Database repairing and consistent query answering Morgan & Claypool Publishers, 3:1-121, 2011.
- L. Bertossi, S. Kolahi, L. Laksmhmanan. Data cleaning and query answering with matching dependencies and matching functions. Theory of Computing Systems, 52:441-482, 2013.
- L. Bolc, P. Borowik Many-valued logics 1: theoretical foundations. Springer Science & Business Media, 2013.
- L. Caruccio, V. Deufemia, G. Polese Relaxed functional dependencies—a survey of approaches IEEE Transactions on knowledge and data engineering, 28 :147-165, 2015.

References

► A. Day

The Lattice Theory of Functional Dependencies and Normal Decompositions. *Int. J. Algebra Comput.*, 2:409-432, 1992.

J. Demetrovics, L. Libkin, I. Muchnik Functional dependencies in relational databases: A lattice point of view Discrete Applied Mathematics, 40:155-185, 1992.

L. Libkin

SQL's three-valued logic and certain answers. *Algebra Universalis*, 24:60-73, 1987.

J. Goguen

L-fuzzy sets. Journal of mathematical analysis and applications, 18:145-174, 1967.

L. Nourine, J.-M Petit, S. Vilmin
 Towards declarative comparabilities: application to functional dependencies.

 arXiv preprint arXiv:1909.12656, 2021.