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Dihypergraphs
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I Vertex set V = [9],

I directed hypergraph (dihypergraph) H = (V,E) with arcs
E = {(12, 3), (4, 3), (45, 6), (56, 7), (28, 4), (89, 2), (89, 6)}.
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Dihypergraph decomposition

I Dihypergraphs :
. an arc (B, h) is made of a body B and a head h,
. sometimes known as B-graphs [Ausiello, Luigi, 2017], [Gallo et al., 1993],
. applications in various fields of computer science [Ausiello et al., 1986],

[Bertet et al., 2018].

I Decomposition strategy :
. split : bipartition V1, V2 of V that cuts H in two disjoint parts H[V1],H[V2]

interacting together through a bipartite dihypergraph H[V1, V2],
. recursive application of the splitting operation rises a H-tree, a hierarchical

decomposition of H.
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Split
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How to find a split

I 1 and 2 are body-connected
I 1289 is a body-connected component of H
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Theorem (Nourine, V., 2020+)

Let H = (V,E) be a dihypergraph. There is a split for H if and only if it is not
body-connected.

Simon Vilmin - 5/ 18 - September 2020



Hierarchical Decomposition
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Hierarchical Decomposition

Theorem (Nourine, V., 2020+)

Let H be a dihypergraph. There is an algorithm which computes a H-tree for H, if
it exists, in polynomial time and space in the size of H.

I Dihypergraph without splits : H = ([3], {(12, 3), (13, 2)}).
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I Decomposition to H-factors instead.
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Multiple H-trees
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I H = (V,E), V = [9] and E = {(12, 3), (23, 4), (34, 5), (56, 7), (67, 8)}
I Two H-trees: the right one has better balancing
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Dihypergraph, closure systems
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I Let F = 45, it fails (45, 6) and (4, 3)3456 fails (56, 7)34567 fails no other arc
I We add 36 to FWe add 7So FH = 34567
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Dihypergraph and closure systems

I FH = {FH | F ⊆ V} is a closure system (ordered by ⊆):
. V ∈ FH,
. F1, F2 ∈ FH implies F1 ∩ F2 ∈ FH.

I Let X ⊆ V, the trace of FH is FH : X = {F ∩ X | F ∈ FH}.
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Figure: A dihypergraph H = (V,E) with V = [5], E = {(12, 3), (2, 4), (1, 5), (13, 4), (23, 5)}
and its corresponding FH.
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Case of empty split

I H[V1, V2] has no arcs
I F2 ∈ F2 combined with any F1 ∈ F1copies of F1 on each F2 ∈ F2F direct product

of F1,F2
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Acyclic split

I Restriction of the bipartite dihypergraph H[V1, V2]

I Acyclic split: each arc (B, h) of H[V1, V2] goes from V1 to V2

I Expression of F in terms of F1,F2
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Acyclic split on closure systems
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Trace decomposition of closure systems

Theorem (Nourine, V., 2020+)

Let H = (V,E) be a dihypergraph and (V1, V2) a split of H. Then
1. FH ⊆ F1×F2,
2. if H[V1, V2] has no edges, then FH = F1×F2,
3. if the split is acyclic, then FH : Vi = Fi , i ∈ {1, 2}.
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(Acyclic) Hierarchical decomposition
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Splits for closure systems

I Characterization of some classes of lattice (Tamari lattices)

I Algorithm for translating between representations of closure systems.
[Nourine, V., 2020]

I Algorithms for minimization ? New classes of closure systems ?
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Conclusion

I Study of a partition operation, the split which divides a dihypergraph into two
subhypergraph interacting via a bipartite one.

I Induces a lossless hierarchical decomposition, found in polynomial time.

I Reflects a decomposition of the underlying closure system.

I Further work on both the structure of H-tree and closure systems.

Thank you for your attention!
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