

Enumerating maximal consistent closed sets in closure systems ICFCA 2021, International Conference on Formal Concept Analysis

Lhouari Nourine and Simon Vilmin.

LIMOS, UCA

June 30th, 2021

ICFCA 2021, 1/ 18 - June 30th, 2021

Implications and inconsistency

- ▶ A set X of attributes with implications Σ , and closure system \mathcal{F}
- ► A consistency graph G (over X)
- ▶ Problem MCCENUM : enumerate maximal consistent closed sets of F w.r.t G .

Formally

Problem - Maximal consistent closed sets enumeration (MCCENUM)

- ▶ Input: A set of implications Σ over X, a consistency graph G = (X, E).
- ▶ Output: maximal consistent closed sets of \mathcal{F} w.r.t G, denoted maxCC(Σ , G).

Origins:

- Representation for median-semilattices [Barthélemy, Constantin, 1993], [Nielsen et al., 1981]
- ▶ Extended to modular-semilattices with applications to combinatorial optimization [Hirai, Nakashima, 2020], [Hirai, Nakashima, 2018].
- MCCENUM output-polynomial for modular/median-semilattices [Hirai, Nakashima, 2018], [Kavvadias et al, 1995]
- Restricted case of dualization in lattices given by implicational bases, an *NP-complete problem* [Kavvadias et al, 1995], [Babin, Kuznetsov, 2017].

Quick recap on enumeration

- ▶ In enumeration, the size *N* of the output may be *exponential* in the input size *n*.
- \blacktriangleright Let ${\mathcal A}$ be an enumeration algorithm
 - ▷ Execution time bounded by poly(n + N): A runs in *output-polynomial* time
 - ▷ Delay poly(n) between two outputs: A has polynomial delay
 - ▷ Delay poly(n + i) between i-th and i + 1-th outputs: A runs in incremental-polynomial time
 - ▷ Execution time bounded by $2^{\text{polylog}(n+N)}$: \mathcal{A} runs in *output-quasipolynomial* time.

Connexion with co-atoms

Maximal consistent closed sets are now co-atoms.

Connexion with co-atoms (bis)

- ▶ When adding edges of *G* as *keys*
- ▶ MCCENUM becomes a *restricted* instance of :

Problem - Co-atoms enumerations (CE)

▷ Input: A set of implications Σ over X.

 \triangleright Output: Co-atoms of \mathcal{F} .

 But, CE is *untractable* in output-poly time (unless P = NP) ! [Kavvadias et al, 1995]

▶ So, what about our problem ?

Proof by picture

- Start from Σ over X (with induced \mathcal{F})
- ▶ Create fresh elements u, v, add $X \rightarrow uv$ to Σ
- ▶ The graph G (over $X \cup \{u, v\}$) has a unique edge: uv
- ▶ maximal consistent closed sets are duplications of *F*'s co-atoms.

Results

Theorem [Nourine, V., 2021+]: The problem $\mathrm{MCCENUM}$ cannot be solved in output-polynomial time unless P = NP.

- ▶ Look carefully at the reduction of [Kavvadias et al, 1995]
- ▶ Slightly change the implication $X \rightarrow uv$
- ▶ Use the D-relation of (see e.g. [Freese et al, 1995]) for lower bounded closure systems.

Corollary [Nourine, V., 2021+]: The problem $\mathrm{MCCENUM}$ cannot be solved in output-polynomial time unless P = NP, even when restricted to lower bounded closure systems.

An approach to tractable cases

Co-atoms of are maximal independent sets of keys:

- ▷ Add to Σ the implications $uv \rightarrow X$, for edges uv of G
- $\triangleright~$ Compute the keys ${\cal K}$
- ▷ Find the maximal independent sets $MIS(\mathcal{K}) = maxCC(\Sigma, G)$.

How do keys behave ?

▶ In our case, a subset F must contain a key if:

- \triangleright it *contains* an edge of *G*,
- \triangleright its *closure contains* an edge of *G*
- ▶ Thus, a key K has the form $K = A_u \cup A_v$ with A_u, A_v minimal generators of u, v▷ A_u minimal generator of u if it is a minimal subset of X such that $A_u \rightarrow u$.

Exponential Example

- ► $X = \{a_1, ..., a_n, b_1, ..., b_n, c_1, ..., c_n, d_1, ..., d_n, u, v\}$
- Σ with implications:
- ▶ G has a unique edge uv
- maxCC(Σ , G) has 2*n* solutions : X minus a triple { u, a_i, b_i } or { v, c_i, d_i }
- ▶ at least 2^{2n} keys of size 2n: all binary words on $\{a_i, b_i\}^n \times \{c_i, d_i\}^n$.

Carathéodory number

- ▶ Carathéodory number c(F): max. size of a minimal generator
- ▶ If bounded by a constant k:
 - $\triangleright \text{ Keys have size } \leq 2 \times k$
 - ▷ and \mathcal{K} has size poly(|X|) !
- ► MIS(K) = maxCC(Σ, G) computable in incremental-poly time [Eiter et al., 1996]

Theorem [Nourine, V., 2021+]: If the Carathéodory number is bounded by a constant, MCCENUM can be solved in incremental-polynomial time.

Some closures with bounded $c(\mathcal{F})$

ideals of a poset $c(\mathcal{F})=1$

monophonic convexity of a chordal graph $c(\mathcal{F})=2$

convex hull in \mathbb{R}^k $c(\mathcal{F}) = k + 1$

The (atomistic) modular case

- ▶ MCCENUM easy to solve in distributive closure systems
- ▶ What about modularity ? Focus on the atomistic case:
 - \triangleright independence of minimal generators [Grätzer, 2011]: subsets of A_u generates a boolean sublattice of \mathcal{F}
 - ▷ biatomicity [Bennett, 1987]: if $F \in \mathcal{F}$ and $F \cup x \rightarrow y$, there exists $z \in F$ such that $zx \rightarrow y$
 - $\triangleright \implies \mathsf{c}(\mathcal{F}) \leq \log_2(|X|)$
- ► So, keys have size at most 2 × log₂(|X|) !

Theorem [Nourine, V., 2021+]: The problem MCCENUM can be solved in

MCCENUM : The big picture

- Bool. = Boolean Dist. = Distributive At. = Atomistic Mod. = Modular Ac. = Acyclic CG = Convex Geometry Bd. = Bounded LB = Lower Bounded
- $\mathsf{SD} = \mathsf{Semidistributive}$

Conclusion

- ▶ Problem: given Σ and G = (X, E), find maximal consistent (i.e independent) closed sets of \mathcal{F} w.r.t to G
- Results:
 - X Not solvable in output-polynomial time unless P = NP,
 - Incremental-polynomial if the Carathéodory number is bounded,
 - ✓ Output-quasipolynomial in atomistic modular closure systems.
- Further research:
 - > Tractability if the context is given as an input ?
 - > Output-polynomial classes of closure systems generalizing distributivity ?

References

- J-P. Barthélemy, J. Constantin Median graphs, parallelism and posets. Discrete Mathematics, 111 :49-63, 1993.
- M. Nielsen, G. Plotkin, G. Winskel Petri nets, event structures and domains, part I. Theoretical Computer Science, 13 :85-108, 1981.
- H. Hirai, S. Nakashima A compact representation for modular semilattices and its applications. Order, 37 :479-507, 2020.
- H. Hiroshi and T. Oki A compact representation for minimizers of k-submodular functions. Journal of Combinatorial Optimization, 36 :709-741, 2018.
- T. Eiter, G. Gottlob, K. Makino. New results on monotone dualization and generating hypergraph transversals. SIAM Journal on Computing, 32 :514-537, 2003.
- M. Fredman, L. Khachiyan.
 On the complexity of dualization of monotone disjunctive normal forms. Journal of Algorithms, 21 :618-628, 1996.

References

- D. Kavvadias, M. Sideri, E. Stavropoulos Generating all maximal models of a Boolean expression. Information Processing Letters, 74 :157-162, 2000.
- M. Babin, S. Kuznetsov Dualization in lattices given by ordered sets of irreducibles. Theoretical Computer Science, 658 :316-326, 2017.
- L. Nourine, S. Vilmin. Enumerating maximal consistent closed sets in closure systems arXiv preprint arXiv:2102.04245, 2021.
- M.K. Bennett
 Biatomic lattices.
 Algebra Universalis, 24 :60-73, 1987.
- G. Grätzer
 Lattice theory: foundation.
 Springer Science & Business Media, 2011.
- R. Freese, J. Ježek, J.B. Nation Free lattices. American Mathematical Soc., 1995.