Enumerating maximal consistent closed sets in closure systems ICFCA 2021, International Conference on Formal Concept Analysis

Lhouari Nourine and Simon Vilmin.

LIMOS, UCA

June 30th, 2021

Implications and inconsistency

- A set X of attributes with implications Σ, and closure system \mathcal{F}
- A consistency graph G (over X)
- Problem MCCENUM : enumerate maximal consistent closed sets of \mathcal{F} w.r.t G.
?

134 max consistent

Problem - Maximal consistent closed sets enumeration (MCCENUM)

- Input: A set of implications Σ over X, a consistency graph $G=(X, E)$.
- Output: maximal consistent closed sets of \mathcal{F} w.r.t G, denoted $\operatorname{maxCC}(\Sigma, G)$.

Origins:

- Representation for median-semilattices [Barthélemy, Constantin, 1993], [Nielsen et al., 1981]
- Extended to modular-semilattices with applications to combinatorial optimization [Hirai, Nakashima, 2020], [Hirai, Nakashima, 2018].
- MCCENUM output-polynomial for modular/median-semilattices [Hirai, Nakashima, 2018], [Kavvadias et al, 1995]
- Restricted case of dualization in lattices given by implicational bases, an NP-complete problem [Kavvadias et al, 1995], [Babin, Kuznetsov, 2017].

Quick recap on enumeration

- In enumeration, the size N of the output may be exponential in the input size n.
- Let \mathcal{A} be an enumeration algorithm
\triangleright Execution time bounded by poly $(n+N)$: \mathcal{A} runs in output-polynomial time
\triangleright Delay poly (n) between two outputs: \mathcal{A} has polynomial delay
\triangleright Delay poly $(n+i)$ between i-th and $i+1$-th outputs: \mathcal{A} runs in incremental-polynomial time
\triangleright Execution time bounded by $2^{\text {polylog }(n+N)}$: \mathcal{A} runs in output-quasipolynomial time.

Execution time of \mathcal{A}

$2^{\text {polylog }(n+N)}$

Connexion with co-atoms

- Maximal consistent closed sets are now co-atoms.

$$
\Sigma=\left[\begin{array}{lr}
6 \rightarrow 2, & 16 \rightarrow 5, \\
5 \rightarrow 2, & 15 \rightarrow 4, \\
3 \rightarrow 1, & 24 \rightarrow 5, \\
4 \rightarrow 1, & 16 \rightarrow X, \\
56 \rightarrow X, & 35 \rightarrow X
\end{array}\right]
$$

Connexion with co-atoms (bis)

- When adding edges of G as keys
- MCCEnum becomes a restricted instance of :

Problem - Co-atoms enumerations (CE)

\triangleright Input: A set of implications Σ over X.
\triangleright Output: Co-atoms of \mathcal{F}.

- But, CE is untractable in output-poly time (unless $\mathrm{P}=\mathrm{NP}$)! [Kavvadias et al, 1995]
- So, what about our problem ?

Proof by picture

- Start from Σ over X (with induced \mathcal{F})
- Create fresh elements u, v, add $X \rightarrow u v$ to Σ
- The graph G (over $X \cup\{u, v\}$) has a unique edge: $u v$
- maximal consistent closed sets are duplications of \mathcal{F} 's co-atoms.

Results

Theorem [Nourine, V., 2021+]: The problem MCCENUM cannot be solved in output-polynomial time unless $P=N P$.

- Look carefully at the reduction of [Kavvadias et al, 1995]
- Slightly change the implication $X \rightarrow u v$
- Use the D-relation of (see e.g. [Freese et al, 1995]) for lower bounded closure systems.

Corollary [Nourine, V., 2021+]: The problem MCCENUM cannot be solved in output-polynomial time unless $P=N P$, even when restricted to lower bounded closure systems.

An approach to tractable cases

- Co-atoms of are maximal independent sets of keys:
\triangleright Add to Σ the implications $u v \rightarrow X$, for edges $u v$ of G
\triangleright Compute the keys \mathcal{K}
\triangleright Find the maximal independent sets $\operatorname{MIS}(\mathcal{K})=\operatorname{maxCC}(\Sigma, G)$.

How do keys behave?

- In our case, a subset F must contain a key if:
\triangleright it contains an edge of G,
\triangleright its closure contains an edge of G
- Thus, a key K has the form $K=A_{u} \cup A_{v}$ with A_{u}, A_{v} minimal generators of u, v
$\triangleright A_{u}$ minimal generator of u if it is a minimal subset of X such that $A_{u} \rightarrow u$.

Exponential Example

- $X=\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, c_{1}, \ldots, c_{n}, d_{1}, \ldots, d_{n}, u, v\right\}$
- Σ with implications:
- G has a unique edge $u v$
$\downarrow \operatorname{maxCC}(\Sigma, G)$ has $2 n$ solutions: X minus a triple $\left\{u, a_{i}, b_{i}\right\}$ or $\left\{v, c_{i}, d_{i}\right\}$
- at least $2^{2 n}$ keys of size $2 n$: all binary words on $\left\{a_{i}, b_{i}\right\}^{n} \times\left\{c_{i}, d_{i}\right\}^{n}$.

Carathéodory number

- Carathéodory number $\mathrm{c}(\mathcal{F})$: max. size of a minimal generator
- If bounded by a constant k :
\triangleright Keys have size $\leq 2 \times k$
\triangleright and \mathcal{K} has size poly $(|X|)$!
- $\operatorname{MIS}(\mathcal{K})=\operatorname{maxCC}(\Sigma, G)$ computable in incremental-poly time [Eiter et al., 1996]

Theorem [Nourine, V., 2021+]: If the Carathéodory number is bounded by a constant, MCCENUM can be solved in incremental-polynomial time.

Some closures with bounded $\mathrm{c}(\mathcal{F})$

ideals of a poset

$$
c(\mathcal{F})=1
$$

monophonic convexity of a chordal graph

$$
c(\mathcal{F})=2
$$

convex subsets of a poset

$$
c(\mathcal{F})=2
$$

convex hull in \mathbb{R}^{k}

$$
c(\mathcal{F})=k+1
$$

The (atomistic) modular case

- MCCENum easy to solve in distributive closure systems
- What about modularity ? Focus on the atomistic case:
\triangleright independence of minimal generators [Grätzer, 2011]: subsets of A_{u} generates a boolean sublattice of \mathcal{F}
\triangleright biatomicity [Bennett, 1987]: if $F \in \mathcal{F}$ and $F \cup x \rightarrow y$, there exists $z \in F$ such that $z x \rightarrow y$
$\triangleright \Longrightarrow c(\mathcal{F}) \leq \log _{2}(|X|)$
- So, keys have size at most $2 \times \log _{2}(|X|)$!

Theorem [Nourine, V., 2021+]: The problem MCCENUM can be solved in

MCCEnum : The big picture

output-poly
quasi-poly
\mathcal{K} exponential untractable unknown

Bool. = Boolean
Dist. = Distributive
At. $=$ Atomistic
Mod. $=$ Modular
Ac. $=$ Acyclic
CG = Convex Geometry
$\mathrm{Bd} .=$ Bounded
LB = Lower Bounded
SD $=$ Semidistributive

Conclusion

- Problem: given Σ and $G=(X, E)$, find maximal consistent (i.e independent) closed sets of \mathcal{F} w.r.t to G
- Results:
X Not solvable in output-polynomial time unless $P=N P$,
\checkmark Incremental-polynomial if the Carathéodory number is bounded,
\checkmark Output-quasipolynomial in atomistic modular closure systems.
- Further research:
\triangleright Tractability if the context is given as an input ?
\triangleright Output-polynomial classes of closure systems generalizing distributivity ?

References

- J-P. Barthélemy, J. Constantin Median graphs, parallelism and posets.
Discrete Mathematics, 111 :49-63, 1993.
- M. Nielsen, G. Plotkin, G. Winskel

Petri nets, event structures and domains, part I.
Theoretical Computer Science, 13 :85-108, 1981.

- H. Hirai, S. Nakashima

A compact representation for modular semilattices and its applications.
Order, 37 :479-507, 2020.

- H. Hiroshi and T. Oki

A compact representation for minimizers of k-submodular functions.
Journal of Combinatorial Optimization, 36 :709-741, 2018.

- T. Eiter, G. Gottlob, K. Makino.

New results on monotone dualization and generating hypergraph transversals.
SIAM Journal on Computing, 32 :514-537, 2003.

- M. Fredman, L. Khachiyan.

On the complexity of dualization of monotone disjunctive normal forms.
Journal of Algorithms, 21 :618-628, 1996.

References

- D. Kavvadias, M. Sideri, E. Stavropoulos

Generating all maximal models of a Boolean expression.
Information Processing Letters, 74 :157-162, 2000.

- M. Babin, S. Kuznetsov

Dualization in lattices given by ordered sets of irreducibles.
Theoretical Computer Science, 658 :316-326, 2017.

- L. Nourine, S. Vilmin.

Enumerating maximal consistent closed sets in closure systems
arXiv preprint arXiv:2102.04245, 2021.

- M.K. Bennett

Biatomic lattices.
Algebra Universalis, 24 :60-73, 1987.

- G. Grätzer

Lattice theory: foundation.
Springer Science \& Business Media, 2011.

- R. Freese, J. Ježek, J.B. Nation

Free lattices.
American Mathematical Soc., 1995.

