

UNIVERSITY

Horn Minimization

Simon Vilmin, Sergei Obiedkov

HSE

June 19, 2018

Simon Vilmin, Sergei Obiedkov - 1/25 June 19, 2018

Introduction

► Correlation relations (*implications*). e.g: movies and genres, *cyber-punk* → *sci-fi*

► Minimization without loss of knowledge. e.g: sci-fi → sci-fi is useless

Study of existing algorithms.

Simon Vilmin, Sergei Obiedkov - 2/25 June 19, 2018

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ・ つへつ

Outline

NATIONAL RESEARCH UNIVERSITY

I - Horn theories

Closure and implications Minimization task

II - Some Algorithms

Minimizing the input Building the result

III - Experiments

Experiments

Simon Vilmin, Sergei Obiedkov - 3/25 June 19, 2018

Closure operator and systems

1.1 - Closure and implications

NATIONAL RESEARCH UNIVERSITY

Set Σ of attributes. A map $\varphi : 2^{\Sigma} \longrightarrow 2^{\Sigma}$ is a *closure operator* if, $\forall X, Y \subseteq \Sigma$:

- $\blacktriangleright X \subseteq \varphi(X) \quad (extensive)$
- $\blacktriangleright X \subseteq Y \longrightarrow \varphi(X) \subseteq \varphi(Y) \quad (monotone)$
- $\varphi(\varphi(X)) = \varphi(X)$ (idempotent)

Associated terminology:

- $\triangleright X \text{ is closed if } X = \varphi(X),$
- ▶ Σ^{φ} set of closed sets: *closure system*,
- ▶ Σ^{φ} is closed under *intersection*, contains Σ .

I - Horn theories

II - Some Algorithms

III - Experiments 00000000 0 Simon Vilmin, Sergei Obiedkov - 4/25 June 19, 2018

Implications

1.1 - Closure and implications

NATIONAL RESEARCH UNIVERSITY

 $A, B \subseteq \Sigma$. An *implication* is:

 \blacktriangleright A \longrightarrow B, A premise, B conclusion,

$$M \subseteq \Sigma \text{ model of } A \longrightarrow B:$$

$$B \subseteq M \lor A \notin M, \quad (\simeq B \lor \neg A)$$

$$D \subseteq M \lor A \subseteq M, \quad (= D) \\ M \models A \longrightarrow B.$$

Set of implications \mathcal{L} : *implication system*.

▶ $\mathcal{L} \models A \longrightarrow B$: all models of \mathcal{L} are models of $A \longrightarrow B$,

I - Horn theories

II - Some Algorithms

III - Experiments 00000000 0 Simon Vilmin, Sergei Obiedkov - 5/25 June 19, 2018

Implications and closure 1.1 - Closure and implications

 $\ensuremath{\mathcal{L}}$ an implication system:

▶ models of \mathcal{L} form a *closure system*:

$$\Sigma^{\mathcal{L}} = \{ M \subseteq \Sigma \mid M = \mathcal{L}(M) \}$$

► closure operator L(X): smallest model (inclusion wise) of L containing X, X ⊆ Σ:

$$\mathcal{L}(X) = \bigcap \{ M \in \Sigma^{\mathcal{L}} \mid X \subseteq M \}$$

> $\mathcal{L} \models A \longrightarrow B \text{ iff } B \subseteq \mathcal{L}(A).$

I - Horn theories

II - Some Algorithms

III - Experiments 00000000 0 Simon Vilmin, Sergei Obiedkov - 6/25 June 19, 2018

3

イロト 不得 とうほう 不良 とう

Redundancy, minimality 1.2 - Minimization task

 ${\mathcal L}$ and ${\mathcal L}'$ implication systems:

- $\blacktriangleright A \longrightarrow B \in \mathcal{L} \text{ redundant if } \mathcal{L} \{A \longrightarrow B\} \models A \longrightarrow B,$
- $\blacktriangleright \ \mathcal{L}' \models \mathcal{L}: \text{ all implications of } \mathcal{L} \text{ follow from } \mathcal{L}',$
- $\blacktriangleright \ \mathcal{L}' \models \mathcal{L} \text{ and } \mathcal{L} \models \mathcal{L}': \text{ equivalent systems.}$
- ▶ \mathcal{L} *minimum* if no possible \mathcal{L}' such that:
 - $\triangleright \mathcal{L}'$ equivalent to \mathcal{L} ,
 - $\triangleright \mathcal{L}'$ has fewer implications than \mathcal{L} .

Recall property: $(\mathcal{L}^- := \mathcal{L} - \{A \longrightarrow B\})$ $\triangleright \mathcal{L}^- \models A \longrightarrow B \text{ iff } B \subseteq \mathcal{L}^-(A).$

I - Horn theories

II - Some Algorithms

III - Experiments 00000000 0 Simon Vilmin, Sergei Obiedkov - 7/25 June 19, 2018

Particular sets:

Canonical basis

P ⊆ Σ pseudo-closed in L if:
P ≠ L(P),
if Q ⊂ P and Q pseudo-closed, then L(Q) ⊆ P.
Q ⊆ Σ quasi-closed in L if:
∀P ⊆ Q, L(P) ⊆ Q or L(P) = L(Q),
pseudo-closed → quasi-closed.

Duquenne-Guigues (canonical) base:

 $\{P \longrightarrow \mathcal{L}(P) \mid P \text{ pseudo-closed }\}$

I - Horn theories ○○○ ○●○ II - Some Algorithms

III - Experiments 00000000 0 Simon Vilmin, Sergei Obiedkov - 8/25 June 19, 2018

Let ${\mathcal L}$ be an implication system:

Small Example 1.2 - Minimization task

$$\Sigma = \{a, b, c, d, e, f\},$$
$$\Sigma = \{ab \longrightarrow cde, cd \longrightarrow f, c \longrightarrow a, d \longrightarrow b, abcd \longrightarrow ef\}.$$

We have:

▶
$$\mathcal{L}(b) = b$$
, b is *closed*, hence a *model* of \mathcal{L} ,

•
$$\mathcal{L}(ab) = abcdef$$
, ab is *not* a model, (abcdef is)

▶ $abcd \longrightarrow ef$ is *redundant*,

I - Horn theories $\circ \circ \circ$ $\circ \circ \circ \bullet$

II - Some Algorithms

III - Experiments 00000000 0 Simon Vilmin, Sergei Obiedkov - 9/25 June 19, 2018

3

イロト 不同 トイヨト イヨト

Algorithms Core 2.1 - Minimizing the input

NATIONAL RESEARCH UNIVERSITY

Two main ideas:

- minimizing input system
 - ▷ algorithms from FCA and databases,
- building a minimum system against the input
 - ▷ query learning interpretation,

Some notations, given \mathcal{L} :

▶ |B| number of implications, $|\Sigma|$ number of attributes,

►
$$|\mathcal{L}| = O(|\mathcal{B}||\Sigma|)$$
, size of \mathcal{L} .

I - Horn theories

III - Experiments 00000000 0 Simon Vilmin, Sergei Obiedkov - 10/ 25 June 19, 2018

NATIONAL RESEARCH

UNIVERSITY

MINCOVER:

- ▶ from Day, Wild, (80's),
- two steps:

First algorithm 2.1 - Minimizing the input

1. maximize the conclusion $A \longrightarrow B$ becomes $A \longrightarrow \mathcal{L}(A)$

2. remove redundant information if $\mathcal{L}(A) = \mathcal{L}^{-}(A), A \longrightarrow \mathcal{L}(A)$ is redundant

▶ output: *canonical* base, complexity: O(|B||L|).

Recall:
$$\mathcal{L}^- = \mathcal{L} - \{A \longrightarrow \mathcal{L}(A)\}$$

I - Horn theories

II - Some Algorithms

III - Experiments 00000000 0

イロト イヨト イヨト イヨト

Simon Vilmin, Sergei Obiedkov - 11/25 June 19, 2018

э

A variation

2.1 - Minimizing the input

DUQUENNEMIN:

- ▶ variation of MINCOVER by Duquenne (2007),
- ▶ three steps:
 - 1. quasi-closure and redundancy elimination if $B \subseteq \mathcal{L}^{-}(A)$, $A \longrightarrow B$ is useless else $A \longrightarrow B$ becomes $\mathcal{L}^{-}(A) \longrightarrow (\mathcal{L}^{-}(A) \cup B)$
 - 2. sort implications in \subseteq -compatible order (premises)
 - 3. *iteratively build* Duquenne-Guigues base if $\mathcal{L}^-(A)$ *pseudo-closed*, add $\mathcal{L}^-(A) \longrightarrow \mathcal{L}(A)$ to the result

▶ output: *canonical* base, complexity: $O(|\mathcal{B}||\mathcal{L}|)$.

I - Horn theories

II - Some Algorithms

III - Experiments 00000000 0 Simon Vilmin, Sergei Obiedkov - 12/25 June 19, 2018

Database approach

2.1 - Minimizing the input

MAIERMIN:

▶ functional dependency based algorithm, Maier (80's),

► steps:

1. redundancy elimination if $B \subseteq \mathcal{L}^{-}(A)$, $A \longrightarrow B$ is useless

 equivalence classes reduction group implications by premises closure reduce those classes

▶ output: minimum basis, complexity: O(|B||L|).

I - Horn theories

II - Some Algorithms

III - Experiments 00000000 0 Simon Vilmin, Sergei Obiedkov - 13/25 June 19, 2018

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

General principle

2.2 - Building the result

ATIONAL RESEARCH UNIVERSITY

Query learning and Angluin algorithm (90's):

- ▶ aim: learn a theory by constructing an *hypothesis*
- ▶ oracle answering queries (questions)
- ▶ queries:
 - ▷ equivalence: is our hypothesis equivalent to the target?
 - *membership*: is a set a model of the target?
- ▶ improve by *counterexample*
 - ▷ *positive*: model of the target, not of the hypothesis
 - ▷ *negative*: model of the hypothesis, not of the target

I - Horn theories

III - Experiments 00000000 0 Simon Vilmin, Sergei Obiedkov - 14/25 June 19, 2018

AFP-Based Algorithm

2.2 - Building the result

NATIONAL RESEARCH UNIVERSITY

AFP-BASED:

- derived from Angluin, no proof yet,
- principle:
 - 1. take implications one by one,
 - 2. refine the hypothesis:

use *premises* to generate possible counter-examples add right-closed implications or refine old ones

- expected output: canonical base,
- ▶ *idea* of complexity: $O(|\mathcal{B}|^3|\mathcal{L}|)$.

I - Horn theories

III - Experiments 00000000 0 Simon Vilmin, Sergei Obiedkov - 15/25 June 19, 2018

イロト 不同 トイヨト イヨト 二日

Using minimality constraint 2.2 - Building the result

NATIONAL RESEARCH UNIVERSITY

BERCZIMIN:

- ▶ logic based, Berczi, 2017
- ▶ principle:
 - 1. *build* a basis \mathcal{L}_c against the input \mathcal{L}
 - 2. repeat minimality selection up to equivalence
 - 3. minimality selection:

select the next minimal negative counter-example A, add $A \longrightarrow \mathcal{L}(A)$ to \mathcal{L}_c

• output: *canonical* base, complexity: $O(|\mathcal{B}|^2|\mathcal{L}|)$.

I - Horn theories

III - Experiments 00000000 0 Simon Vilmin, Sergei Obiedkov - 16/25 June 19, 2018

Practical aspect:

- context of FCA, previous study of closure operators,
- ▶ use datasets from UCI repository (*scaling*):
 - ▷ solar flare: 49 attributes,
 - SPECT: 23 attributes,
- ▶ use of CLOSURE (\simeq forward chaining)

▶ C++, boost, python.

I - Horn theories

II - Some Algorithms

III - Experiments •0000000 0 Simon Vilmin, Sergei Obiedkov - 17/25 June 19, 2018

イロト 不同 トイヨト イヨト 二日

Context 2 3.1 - Experiments

- 1 dataset give rise to 5 systems:
 - ▶ Duquenne-Guigues basis (*DG*),
 - minimal generators (*mingen*, right-closed),
 - proper implications (proper)
 - ▶ Maier minimum on mingen (*min 1*, right-closed),
 - ▶ Maier minimum on proper (*min 2*)

	L	Σ	$ \mathcal{B} $
	minimum		3382
Flare	mingen	49	39787
	proper		10692
SPECT	minimum		2169
	mingen	23	44341
	proper		8358

Table: Summary of real datasets characteristics

I - Horn theories

II - Some Algorithms

III - Experiments

Simon Vilmin, Sergei Obiedkov - 18/25 June 19, 2018

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

NATIONAL RESEARCH UNIVERSITY

Overhaul results

3.1 - Experiments

UNIVERSITY

\mathcal{L}		MinCov	Duq	Maier	Berczi	AFP
Flare	DG	0.097	0.117	0.211	27.922	96.178
	min 1	0.134	0.194	0.288	27.750	98.145
	min 2	0.200	0.190	0.308	30.063	111.944
	proper	1.684	0.933	0.917	88.375	402.453
	mingen	16.047	7.981	7.576	160.328	2514.610
SPECT	DG	0.045	0.066	0.108	10.328	22.454
	min 1	0.061	0.080	0.134	8.156	19.438
	min 2	0.078	0.070	0.150	8.250	26.980
	proper	0.930	0.394	0.451	51.063	114.564
	mingen	24.077	10.206	10.858	194.875	863.903

Table: Comparison of the algorithms on real datasets (execution in s)

I - Horn theories $\begin{array}{c} 000\\ 000 \end{array}$

II - Some Algorithms

III - Experiments

Simon Vilmin, Sergei Obiedkov - 19/25 June 19, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Observations *on these data*:

- ▶ cost of AFP and BERCZIMIN,
- ► DUQUENNEMIN, MAIERMIN efficient on *non-minimum cases*,
- ▶ MINCOVER slightly better on right-closed minimum cases.

Generating random implication (given $|\Sigma|$, |B|):

- ▶ discrete uniform distribution on *size*, *elements*,
- ▶ premise *A*, conclusion *B*, yield $A B \longrightarrow B$.

I - Horn theories

II - Some Algorithms

III - Experiments

Simon Vilmin, Sergei Obiedkov - 20/25 June 19, 2018

Minimum tests 1

3.1 - Experiments

NATIONAL RESEARCH UNIVERSITY

Figure: Flare - Random against and minimum basis: 49 attr, 3382 imp

I - Horn theories

II - Some Algorithms

III - Experiments

イロト 不同 トイヨト イヨト

Simon Vilmin, Sergei Obiedkov - 21/25 June 19, 2018

э

Minimum tests 2

3.1 - Experiments

NATIONAL RESEARCH UNIVERSITY

Figure: SPECT - Random against minimum basis: 23 attr, 2169 imp

I - Horn theories

II - Some Algorithms

III - Experiments

イロト 不同 トイヨト イヨト

Simon Vilmin, Sergei Obiedkov - 22/25 June 19, 2018

э

Insight on random tests 3.1 - Experiments

NATIONAL RESEARCH UNIVERSITY

I - Horn theories

II - Some Algorithms

III - Experiments 00000000 0 Simon Vilmin, Sergei Obiedkov - 23/25 June 19, 2018 Ideas 3.1 - Experiments

Observations:

- ▶ high speed of MAIERMIN, DUQUENNEMIN on redundant cases,
- ▶ first glance at random: efficiency of AFP.

Explanations:

- ▶ *redundancy elimination* as first step,
- suggests a study of underlying structure (AFP).

Boundaries:

- valid in our context,
- random generation,
- suggests extension of tests.

I - Horn theories

II - Some Algorithms

III - Experiments

Simon Vilmin, Sergei Obiedkov - 24/25 June 19, 2018

Conclusion

NATIONAL RESEARCH UNIVERSITY

Purpose:

study of minimization algorithms.

Results:

- algorithms from various communities,
- ▶ in practice: *redundancy elimination*.

Perspectives:

- theoretical study of systems structure, AFP proof and complexity,
- *experimental* aspect, extend tests.

Simon Vilmin, Sergei Obiedkov - 25/25 June 19, 2018