Dihypergraph decomposition: application to closure system representations

8th FCA4AI Workshop

Lhouari Nourine and Simon Vilmin.

LIMOS, UCA

August 2020

Implications, Dihypergraphs

- Set V of vertices (attributes)
- Dependencies in V : implications $B \rightarrow h, B \subseteq \mathrm{~V}, h \in \mathrm{~V}$
- Represented by a dihypergraph $\mathcal{H}=(\mathrm{V}, \mathcal{E})$, the arc (B, h) models $B \rightarrow h$

$(12,3)$
$(1,5)$
$(2,4)$
$(13,4)$
$(23,5)$

Dihypergraphs, Closure systems

- F models (B, h) if $B \subseteq F \Longrightarrow h \in F$
- F closed in \mathcal{H} if F models \mathcal{E} (forward chaining)
- $\mathcal{F}=\{F \subseteq \vee \mid F$ closed in $\mathcal{H}\}$ is a closure system:
$\triangleright V \in \mathcal{F}$
$\triangleright F_{1}, F_{2} \in \mathcal{F} \Longrightarrow F_{1} \cap F_{2} \in \mathcal{F}$

Closure systems, Meet-irreducible

- \emptyset obtained by intersection, brings no informationsame for 4, 3, 5, 45, 345, 1234524 cannot be obtained, it is meet-irreducible Meet-irreducible $\mathcal{M} \equiv$ reduced context

Problem

Problem - Enumerating Meet-Irreducible

- Input: a dihypergraph $\mathcal{H}=(\mathrm{V}, \mathcal{E})$.
- Output: the set \mathcal{M} of meet-irreducible elements of \mathcal{F}.
- survey in [Bertet et al., 2018]
- Negative side:
\triangleright harder than hypergraph dualization [Khardon, 1995]
\triangleright pseudo-intent recognition coNP-C [Babin, Kuznetsov, 2013]
- Positive side:
\triangleright generic algorithms [Mannila, Räihä, 1992]
\triangleright classes of closure systems [Beaudou et al., 2017, Defrain et. al., 2019]

Strategy

- Acyclic split of \mathcal{H} :
\triangleright bipartition $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ of V s.t. any arc (B, h) is either in V_{1}, in V_{2} or $B \subseteq \mathrm{~V}_{1}$ and $h \in \mathrm{~V}_{2}$
\triangleright partitions \mathcal{H} into $\mathcal{H}\left[\mathrm{V}_{1}\right], \mathcal{H}\left[\mathrm{V}_{2}\right]$ and a bipartite dihypergraph $\mathcal{H}\left[\mathrm{V}_{1}, \mathrm{~V}_{2}\right]$
- Application :
\triangleright characterization of \mathcal{M}
\triangleright recursive application to obtain hierarchical decomposition of \mathcal{H}

Acyclic split

Closure system construction

- First case: $\mathcal{H}\left[\mathrm{V}_{1}, \mathrm{~V}_{2}\right]$ has no arcsSecond case: $\mathcal{H}\left[\mathrm{V}_{1}, \mathrm{~V}_{2}\right]$ has arcs
- $F_{2} \in \mathcal{F}_{2}$ combined with any $F_{1} \in \mathcal{F}_{1}$ copies of \mathcal{F}_{1} on each $F_{2} \in \mathcal{F}_{2} \mathcal{F}$ direct product of $\mathcal{F}_{1}, \mathcal{F}_{2}$ Extensions of F_{2} are controlled by $\mathcal{H}\left[\mathrm{V}_{1}, \mathrm{~V}_{2}\right]$ Increasing copies of ideals of \mathcal{F}_{1} on \mathcal{F}_{2}

Formal sum-up

- $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ is an acyclic split of \mathcal{H}
- trace (projection) $\mathcal{F}: \mathrm{V}_{1}=\left\{F \cap \mathrm{~V}_{1} \mid F \in \mathcal{F}\right\}$
- \mathcal{F} is built by adding parts of \mathcal{F}_{1} to each $F_{2} \in \mathcal{F}_{2}$:
$\triangleright \operatorname{Ext}\left(F_{2}\right)=\left\{F \in \mathcal{F} \mid F \cap V_{2}=F_{2}\right\}$, extensions of $F_{2} \in \mathcal{F}_{2}$
$\triangleright \operatorname{Ext}\left(F_{2}\right)$ corresponds to an ideal of \mathcal{F}_{1} controlled by $\mathcal{H}\left[\mathrm{V}_{1}, \mathrm{~V}_{2}\right]$
$\triangleright F_{2} \subseteq F_{2}^{\prime}$ implies $\operatorname{Ext}\left(F_{2}\right): \mathrm{V}_{1} \subseteq \operatorname{Ext}\left(F_{2}^{\prime}\right): \mathrm{V}_{1}$
$\triangleright F_{2}^{\prime} \succ F_{2}$ implies that extensions of F_{2}^{\prime} cover extensions of F_{2}
- Note: $\operatorname{Ext}\left(\mathrm{V}_{2}\right): \mathrm{V}_{1}$ is \mathcal{F}_{1}

Meet-irreducible identification

Meet-irreducible characterization

Theorem (Nourine, V., 2020+)

Let $\mathcal{H}=(\mathrm{V}, \mathcal{E})$ be a dihypergraph and $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ an acyclic split of \mathcal{H}. Meet-irreducible elements of \mathcal{M} of \mathcal{F} are given by the following equality:

$$
\mathcal{M}=\left\{M_{1} \cup V_{2} \mid M_{1} \in \mathcal{M}_{1}\right\} \cup\left\{F \in \max _{\subseteq}\left(\operatorname{Ext}\left(M_{2}\right)\right) \mid M_{2} \in \mathcal{M}_{2}\right\}
$$

where $\mathcal{M}_{1}, \mathcal{M}_{2}$ are meet-irreducible elements of $\mathcal{H}\left[\mathrm{V}_{1}\right], \mathcal{H}\left[\mathrm{V}_{2}\right]$ respectively.

Hierarchical decomposition

Finding maximal extensions

- $\mathcal{H}\left[\mathrm{V}_{1}, \mathrm{~V}_{2}\right]$ defines the antichain of minimum forbidden extensions Pick an hypergraph $\mathcal{H}=(\mathrm{V}, \mathcal{E})$, turn each arc B into (B, z) Acyclic split (V, z) Extensions of \emptyset are determined by $\operatorname{MIS}(\mathcal{H})$

Finding maximal extensions

Problem - Finding Maximal Extensions (FME)

- Input: a dihypergraph $\mathcal{H}=(\mathrm{V}, \mathcal{E})$ with acyclic split $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right), \mathcal{H}\left[\mathrm{V}_{1}\right], \mathcal{H}\left[\mathrm{V}_{2}\right]$, $\mathcal{H}\left[\mathrm{V}_{1}, \mathrm{~V}_{2}\right], \mathcal{M}_{1}, \mathcal{M}_{2}$ and $F_{2} \in \mathcal{F}_{2}$.
- Output: $\max \subseteq\left(\operatorname{Ext}\left(F_{2}\right)\right)$.
- Open in general
- if $\mathcal{H}\left[\mathrm{V}_{1}\right]$ has no arcs, $\mathrm{FME} \equiv$ hypergraph dualization!
\Longrightarrow output quasi-polynomial time algorithm [Fredman, Khachiyan, 1996]

New tractable cases

Main idea: connecting blocks in an acyclic way

Ranked convex geometries

- ranked convex geometry

Theorem [Defrain et. al., 2019]

Enumerating meet-irreducible elements \mathcal{M} from \mathcal{H} in ranked convex geometries can be done in output quasi-polynomial time.

Conclusion

- Problem:
\triangleright enumeration of meet-irreducible elements of a dihypergraph (implications)
\triangleright harder than hypergraph dualization in general
- Our contribution (Nourine, V., 2020+):
\triangleright use of a decomposition operation, acyclic split
\triangleright recursive characterization of \mathcal{M}
\triangleright application to new tractable classes of closure systems, generalizing [Defrain et. al., 2019]
- Future works:
\triangleright characterize/improve tractable cases
\triangleright translation in the other way
Thank you for your attention!

References

- R. Khardon.

Translating between Horn Representations and their Characteristic Models.
Journal of Artificial Intelligence Research, 3 :349-372, 1995.

- O. Defrain, L. Nourine, S. Vilmin.

Translating between the representations of a ranked convex geometry.
arXiv:1907.09433, 2019.

- M. Babin, S. Kuznetsov.

Computing premises of a minimal cover of functional dependencies is intractable.
Discrete Applied Mathematics, 161 :742-749, 2013.

- L. Beaudou, A. Mary, and L. Nourine.

Algorithms for k-meet-semidistributive lattices.
Theoretical Computer Science, 658 :391-398, 2017.

- H. Mannila, K.-J. Räihä.

The design of relational databases.
Addison-Wesley Longman Publishing Co., Inc., 1992.

- M. Fredman, L. Khachiyan.

On the complexity of dualization of monotone disjunctive normal forms.
Journal of Algorithms, 21 :618-628, 1996.

- K. Bertet, C. Demko, J.-F. Viaud, and C. Guérin.

Lattices, closures systems and implication bases: A survey of structural aspects and algorithms.
Theoretical Computer Science 743 :93-109, 2018.

