Functional Dependencies with Predicates: What Makes the g_3 -error Easy to Compute? BDA 2022

> <u>Simon Vilmin</u>¹, Pierre Faure--Giovagnoli^{1, 2}, Jean-Marc Petit¹, and Vasile-Marian Scuturici¹

¹LIRIS, Univ Lyon, INSA Lyon, UCBL, CNRS, Villeurbanne ²Companie Nationale du Rhône

October 2022

Functional dependencies and domain knowledge

۲	F	Ε	Ρ
Ę	2.5	10.1	22.9
ħ	2.7	10.4	23.2
ľ,	2.6	10.3	23.0
r,	2.5	10.2	23-3
r5	2.6	10.1	23.1
ţ	2.6	10.3	22.9

- Data from a hydropower turbine:
 - incoming flow $F(m^3 \cdot s^{-1})$
 - \circ elevation *E* of the waterfall (m)
 - \circ power *P* produced (MW)
- Domain knowledge:
 - \circ *P* is determined by *E* and *F*. i.e. P = f(E, F)

Question. Is domain knowledge supported by data?

- function P = f(E, F) ⇔ functional dependency EF → P holds
 EF → P does not hold: (t₃, t₆) is a (unique) counterexample

Drawbacks of functional dependencies

• A functional dependency (FD) $X \rightarrow A$ holds in a relation r, written $r \models X \rightarrow A$, if

$$\forall t_1, t_2 \in r, t_1[X] = t_2[X] \implies t_1[A] = t_2[A]$$

• Real-life problems:

X mathematical equality is too restrictive

X may not hold on the whole dataset

• Theoretical solutions:

use predicates instead of equality

 \checkmark use a *coverage measure* to estimate the partial validity of $X \rightarrow A$

Predicates to relax equality

• Each attribute A is equipped with a *binary predicate* comparing every two values in the *domain* (dom) of A:

 $\phi_A: \operatorname{dom}(A) \times \operatorname{dom}(A) \to \{\operatorname{true}, \operatorname{false}\}$

- e.g.: distance, similarity, order, ... [Caruccio et al., 2021, Song et al., 2020]
- Relation scheme with predicates (R, Φ): a relation scheme R with a set Φ of predicates (one for each A ∈ R)
- A FD $X \to A$ holds in a relation r w.r.t. (R, Φ) , written $r \models_{\Phi} X \to A$, if

$$\forall t_1, t_2 \in r, \bigwedge_{B \in X} \phi_B(t_1[B], t_2[B]) \implies \phi_A(t_1[A], t_2[A])$$

The g_3 -error and the error validation problem

- g₃-error coverage measure introduced in [Kivinen, Mannila, 1995]:
 o for classical FDs and equality,
 - minimal proportion of tuples to remove from r to satisfy $X \rightarrow A$
- *adapted* to predicates [Faure--Giovagnoli et al., 2022]:

$$g_3^{\Phi}(r, X \to A) = 1 - \frac{\max(\{|s| \mid s \subseteq r, s \models_{\Phi} X \to A\})}{|r|}$$

thus, assessing domain knowledge is solving:

Problem. Error Validation Problem with Predicates (EVPP) In: a relation scheme with predicates (R, Φ) , a relation r and a FD $X \rightarrow A$ over $R, k \in \mathbb{R}$. **Out:** YES if $g_3^{\Phi}(r, X \rightarrow A) \leq k$, NO otherwise.

Back to the example

• (t₃, t₆) no longer an *"erroneous" counterexample*

- (t_4, t_6) "real" counterexample, so $r \not\models_{\Phi} EF \rightarrow P$
- $g_3^{\Phi}(r, EF \rightarrow P) = 0.5$

Situation

- about the complexity of EVPP:
 - o polynomial for usual FDs with equality [Huhtala et al., 1999],
 - *NP-complete* for specific relaxed FDs (e.g. differential, matching, comparable) [Song et al., 2013, Caruccio et al., 2021]

• what makes the problem tractable (or not)?

- *idea:* study the impact of (common) *predicates properties* on EVPP: (ref): $\phi_A(x, x) = \text{true}$ (sym): $\phi_A(x, y) = \text{true implies } \phi_A(y, x) = \text{true}$ (tra): $\phi_A(x, y) = \phi_A(y, z) = \text{true implies } \phi_A(x, z) = \text{true}$ (asym): $\phi_A(x, y) = \phi_A(y, x) = \text{true implies } x = y$
- \circ goal: a quick-reference map of EVPP complexity

Conflict-graph

• $CG_{\Phi}(r, EF \rightarrow P)$ conflict-graph of $EF \rightarrow P$ in r (see [Bertossi, 2011])

• for $s \subseteq r$, $s \models_{\Phi} EF \rightarrow P \Leftrightarrow s$ is an *independent set* of $CG_{\Phi}(r, EF \rightarrow P)$

• solving EVPP \Leftrightarrow finding the maximal size of an independent set in CG_{Φ}

The structure of conflict-graph

- Finding the maximal size of an independent set is NP-complete
- The *properties* of the predicates bound the *structure* of the conflict-graph!

Vilmin et al. - BDA 2022 - 8/10

The complexity of EVPP

Theorem. [Vilmin et al., 2022] The problem EVPP is :

- NP-complete when predicates enjoy ref and sym
- NP-complete when predicates enjoy ref, tra and asym
- polynomial when predicates enjoy tra and sym

Conclusion

- EVPP : estimate the g_3 -error of a functional dependency with predicates
 - can be used to confront experts knowledge against data [Faure--Giovagnoli et al., 2022]
 - complexity depends on the *properties* of predicates and the underlying conflict-graph [Bertossi, 2011]
- Main results:
 - \circ having sym and tra \implies EVPP polynomial
 - \circ dropping sym or tra \implies EVPP NP-complete
- Further research:
 - practical algorithms for special cases?
 - connection with repairs for sets of FDs? [Livshits et al., 2017]

References

L. Bertossi Database repairing and consistent query answering. Synthesis Lectures on Data Management, vol. 3, p. 1–121, 2011.

- L. Caruccio, V. Deufemia, and G. Giuseppe Relaxed functional dependencies-a survey of approaches. IEEE Transactions on Knowledge and Data Engineering, vol. 28, p. 147–165, 2015.
- P. Faure--Giovagnoli, J.-M Petit, V.-M Scuturici Assessing the Existence of a Function in a Dataset with the g3 Indicator. IEEE International Conference on Data Engineering, 2022.
- Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen TANE: An efficient algorithm for discovering functional and approximate dependencies. *The computer journal*, vol. 42, p. 100–111, 1999.

 J. Kivinen, H. Mannila Approximate inference of functional dependencies from relations. Theoretical Computer Science, vol. 149, p. 129–149, 1995.

References

- E. Livshits, B. Kimelfeld, R. Sudeepa Computing optimal repairs for functional dependencies ACM Transactions on Database Systems, vol. 45, p. 1–46, 2020.
- S. Song, L. Chen, and P. Yu Comparable dependencies over heterogeneous data. *The VLDB journal*, vol. 22, p. 253–274, 2013.
- S. Song, F. Gao, R. Huang, and C. Wang Data Dependencies over Big Data: A Family Tree. IEEE Transactions on Knowledge and Data Engineering, 2020.
- S. Vilmin, P. Faure--Giovagnoli, J-M. Petit, V-M. Scuturici Relaxed functional dependencies-a survey of approaches. IEEE Transactions on Knowledge and Data Engineering, vol. 28, p. 147–165, 2015.