Fondements des Bases de données : relation exemple M1 - Informatique

Lhouari Nourine, Karima Ennaoui et Simon Vilmin.

Institut d'informatique, ISIMA

2020-2021

Slides inspirées du cours de Jean-Marc Petit : https://perso.liris.cnrs.fr/jmpetit/ferme/doku.php/teaching

Construction par l'exemple

- Représentation « par l'exemple » d'ensemble de contraintes : on manipule des valeurs, visualisation plus simple des éventuels conflits, incohérences, mauvaise conception, . . .
- ▶ Une « bonne » relation exemple par rapport à des contraintes :

 - ▷ on l'appelle une relation d'Armstrong.
 - ▶ pour nous, focus (encore) sur les dépendances fonctionnelles.
- ▶ Deux principaux domaines d'application :
 - ▷ Conception par l'exemple
- ► Exemple introductif : les nuages!
 - ▶ Attributs, R = {Forme, Structure, Nom, Couleur},
 - $\, \, \triangleright \, \, \mathsf{des} \, \, \mathsf{DFs} : \mathsf{Forme}, \, \mathsf{Structure} \, \to \, \mathsf{Nom} \, ; \, \mathsf{Nom} \, \to \, \mathsf{Forme} \, ; \, \mathsf{Couleur} \, \to \, \mathsf{Structure}.$

Relation exemple : ni pas assez

Forme	Structure	Nom	Couleur
couche	cristaux	cirrostratus	translucide
couche	c + g	altostratus	gris
mouton	c + g	cumulonimbus	gris
mouton	gouttelettes	cumulonimbus	blanc
enclume	gouttelettes	cumulonimbus	blanc
enclume	gouttelettes	cumulonimbus	noir

▶ R = {Forme, Structure, Nom, Couleur}, DFs : Forme, Structure \rightarrow Nom; Nom \rightarrow Forme; Couleur \rightarrow Structure.

Relation exemple: ni pas assez

Forme	Structure	Nom	Couleur
couche	cristaux	cirrostratus	translucide
couche	c + g	altostratus	gris
mouton	c + g	cumulonimbus	gris
mouton	gouttelettes	cumulonimbus	blanc
enclume	gouttelettes	cumulonimbus	blanc
enclume	gouttelettes	cumulonimbus	noir

- ▶ R = {Forme, Structure, Nom, Couleur}, DFs : Forme, Structure \rightarrow Nom; Nom \rightarrow Forme; Couleur \rightarrow Structure.
- X La DF Nom → Forme n'est pas respectée!

Relation exemple : ni trop

Forme	Structure	Nom	Couleur
couche	cristaux	cirrostratus	translucide
couche	c + g	altostratus	gris
mouton	c + g	cumulonimbus	gris
mouton	gouttelettes	cumulonimbus	blanc
rouleaux	gouttelettes	altocumulus	b + g

 $\begin{tabular}{l} $ R = \{Forme, Structure, Nom, Couleur\}, \ DFs: Forme, \ Structure \rightarrow Nom; \ Nom \rightarrow Forme; \ Couleur \rightarrow Structure. \end{tabular}$

Relation exemple : ni trop

Forme	Structure	Nom	Couleur
couche	cristaux	cirrostratus	translucide
couche	c + g	altostratus	gris
mouton	c + g	cumulonimbus	gris
mouton	gouttelettes	cumulonimbus	blanc
rouleaux	gouttelettes	altocumulus	b + g

- $\qquad \mathsf{R} = \{\textit{Forme}, \textit{Structure}, \textit{Nom}, \textit{Couleur}\}, \ \mathsf{DFs} : \mathsf{Forme}, \ \mathsf{Structure} \to \mathsf{Nom} \ ; \ \mathsf{Nom} \to \mathsf{Forme} \ ; \ \mathsf{Couleur} \to \mathsf{Structure}.$
- ✓ La relation satisfait les DFs

Relation exemple: ni trop

Forme	Structure	Nom	Couleur
couche	cristaux	cirrostratus	translucide
couche	c + g	altostratus	gris
mouton	c + g	cumulonimbus	gris
mouton	gouttelettes	cumulonimbus	blanc
rouleaux	gouttelettes	altocumulus	b + g

- $\qquad \mathsf{R} = \{\textit{Forme}, \textit{Structure}, \textit{Nom}, \textit{Couleur}\}, \ \mathsf{DFs} : \mathsf{Forme}, \ \mathsf{Structure} \to \mathsf{Nom} \ ; \ \mathsf{Nom} \to \mathsf{Forme} \ ; \ \mathsf{Couleur} \to \mathsf{Structure}.$
- ✓ La relation satisfait les DFs
- X mais Forme, Structure → Nom, Couleur est aussi valide (Forme, Structure est une clé)!

Relation exemple : juste ce qu'il faut

Forme	Structure	Nom	Couleur
couche	cristaux	cirrostratus	translucide
couche	c + g	altostratus	gris
mouton	c + g	cumulonimbus	gris
mouton	gouttelettes	cumulonimbus	blanc
mouton	gouttelettes	cumulonimbus	noir

▶ R = {Forme, Structure, Nom, Couleur}, DFs : Forme, Structure \rightarrow Nom; Nom \rightarrow Forme; Couleur \rightarrow Structure.

Relation exemple : juste ce qu'il faut

Forme	Structure	Nom	Couleur
couche	cristaux	cirrostratus	translucide
couche	c + g	altostratus	gris
mouton	c + g	cumulonimbus	gris
mouton	gouttelettes	cumulonimbus	blanc
mouton	gouttelettes	cumulonimbus	noir

- $\blacksquare \ \ \, \mathsf{R} = \{\textit{Forme}, \textit{Structure}, \textit{Nom}, \textit{Couleur}\}, \ \mathsf{DFs} : \mathsf{Forme}, \ \mathsf{Structure} \to \mathsf{Nom}\,; \ \mathsf{Nom} \to \mathsf{Forme}\,; \ \mathsf{Couleur} \to \mathsf{Structure}.$
- ✓ La relation satisfait les DFs

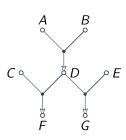
Relation exemple : juste ce qu'il faut

Forme	Structure	Nom	Couleur
couche	cristaux	cirrostratus	translucide
couche	c + g	altostratus	gris
mouton	c + g	cumulonimbus	gris
mouton	gouttelettes	cumulonimbus	blanc
mouton	gouttelettes	cumulonimbus	noir

- $\qquad \qquad \mathsf{R} = \{\textit{Forme}, \textit{Structure}, \textit{Nom}, \textit{Couleur}\}, \ \mathsf{DFs} : \mathsf{Forme}, \ \mathsf{Structure} \to \mathsf{Nom} \ ; \ \mathsf{Nom} \to \mathsf{Forme} \ ; \ \mathsf{Couleur} \to \mathsf{Structure}.$
- ✓ La relation satisfait les DFs
- √ et aucune autre qui ne découle pas de celles de départ

Dans l'épisode précédent

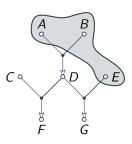
- Les contraintes d'intégrité définissent ce qu'est une bonne base de données,
- ➤ Σ ensemble de dépendances fonctionnelles (DFs) X → Y sur un schéma de relation R.
- ▶ $\Sigma \models X \rightarrow Y$ est l'implication logique : « on déduit $X \rightarrow Y$ à partir de Σ ».
- ▶ $X^{\Sigma} = \{A \in \mathbb{R} \mid \Sigma \models X \rightarrow A\}$, pour tout $X \subseteq \mathbb{R}$ (algo de *fermeture*).



- $\triangleright \ \Sigma = \{AB \rightarrow D, CD \rightarrow F, DE \rightarrow G\},\$
- $\blacktriangleright ABE^{\Sigma} = ABDEG.$

Dans l'épisode précédent

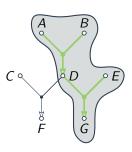
- Les contraintes d'intégrité définissent ce qu'est une bonne base de données,
- ➤ Σ ensemble de dépendances fonctionnelles (DFs) X → Y sur un schéma de relation R.
- ▶ $\Sigma \models X \rightarrow Y$ est l'implication logique : « on déduit $X \rightarrow Y$ à partir de Σ ».
- ▶ $X^{\Sigma} = \{A \in \mathbb{R} \mid \Sigma \models X \rightarrow A\}$, pour tout $X \subseteq \mathbb{R}$ (algo de *fermeture*).



- $\blacktriangleright \ \Sigma = \{AB \rightarrow D, CD \rightarrow F, DE \rightarrow G\},\$
- $\blacktriangleright ABE^{\Sigma} = ABDEG.$

Dans l'épisode précédent

- Les contraintes d'intégrité définissent ce qu'est une bonne base de données,
- ➤ Σ ensemble de dépendances fonctionnelles (DFs) X → Y sur un schéma de relation R.
- ▶ $\Sigma \models X \rightarrow Y$ est l'implication logique : « on déduit $X \rightarrow Y$ à partir de Σ ».
- ▶ $X^{\Sigma} = \{A \in \mathbb{R} \mid \Sigma \models X \rightarrow A\}$, pour tout $X \subseteq \mathbb{R}$ (algo de *fermeture*).



- $\triangleright \ \Sigma = \{AB \rightarrow D, CD \rightarrow F, DE \rightarrow G\},\$
- $ABE^{\Sigma} = ABDEG.$

Relation d'Armstrong

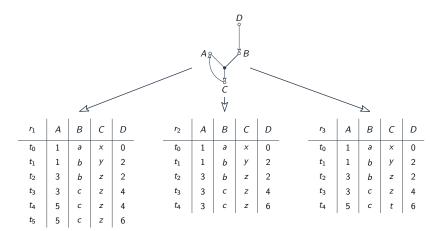
Définition - Relation d'Armstrong

Soit Σ un ensemble de DFs sur R. Une relation r sur R est une relation d'Armstrong (relation exemple) pour Σ si pour toute DF $X \to Y$:

$$\Sigma \models X \rightarrow Y$$
 si et seulement si $r \models X \rightarrow Y$

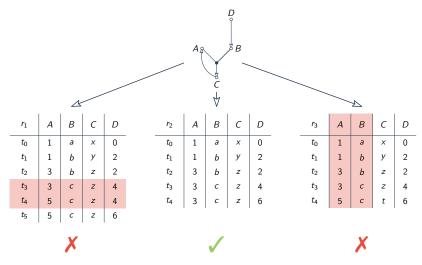
- ▶ Une relation d'Armstrong pour Σ satisfait Σ et *rien d'autre*.
- ▶ Les relations d'Armstrong *existent aussi* pour les autres types de contraintes!

Exemple



▶ Où est la relation d'Armstrong de $\Sigma = \{D \rightarrow B, AB \rightarrow C, C \rightarrow A\}$?

Exemple



 $\blacktriangleright \ \ \mbox{Où est la relation d'Armstrong de } \Sigma = \{D \mathop{\rightarrow} B, AB \mathop{\rightarrow} C, C \mathop{\rightarrow} A\}\,?$

Existence

 \blacktriangleright Question : peut-on trouver une relation d'Armstrong pour n'importe quel Σ ?

Existence

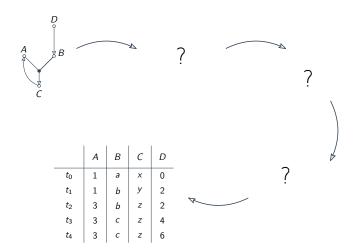
▶ Question : peut-on trouver une relation d'Armstrong pour n'importe quel Σ ?

OUI !!!

- ▶ Il existe même une procédure « algorithmique » pour le faire!
- ▶ Hypothèse : pas de DFs $\emptyset \rightarrow X$, domaines infinis.

Théorème (Armstrong 1974) : Soit Σ un ensemble de DFs sur R. Il existe une relation d'Armstrong r pour Σ .

Armstrong wars : Épisode I



Opérateur de fermeture

Définition - Opérateur de fermeture

Soit $\phi\colon 2^R\to 2^R$ une application. On dit que ϕ est un *opérateur de fermeture* (ou simplement une *fermeture*) si pour tout $X,Y\subseteq R$:

- \blacktriangleright $X \subseteq \phi(X)$ (extensive),
- ▶ si $X \subseteq Y$ alors $\phi(X) \subseteq \phi(Y)$ (monotone),
- $\blacktriangleright \phi(\phi(X)) = \phi(X)$ (idempotente).
- ▶ Exercice : les applications suivantes sont-elles des fermetures ?
 - ▶ Pour tout $X \subseteq R$, $\phi(X) = R$.
 - $\quad \triangleright \ \, \mathsf{Soit} \, \, Y \subseteq \mathsf{R}. \, \, \mathsf{Pour} \, \, \mathsf{tout} \, \, X \subseteq \mathsf{R}, \, \, \phi(X) = X \cap Y.$
 - ightharpoonup Soit $Y\subseteq R$. Pour tout $X\subseteq R$, $\phi(X)=X\cup Y$.
 - $\qquad \qquad \mathsf{Soit} \ G = (V, E) \ \mathsf{un} \ \mathsf{graphe}. \ \mathsf{Pour} \ \mathsf{tout} \ X \subseteq V, \\ \phi(X) = X \cup \{u \in V \mid \exists x \in X \ \mathsf{tel} \ \mathsf{que} \ (x, u) \in E\}.$

Système de fermeture

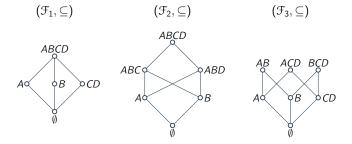
Définition - Système de fermeture

Soit $\mathfrak{F}\subseteq 2^R$ une famille d'ensembles sur R. On dit que \mathfrak{F} est un système de fermeture, et ses éléments sont des fermés, si :

- $ightharpoonup R \in \mathcal{F}$,
- ▶ $F_1, F_2 \in \mathcal{F}$ implique que $F_1 \cap F_2 \in \mathcal{F}$.
- ▶ Les systèmes de fermeture sont partout!
 - ▷ logique, data mining (FCA), base de données
 - ▷ géométrie, optimisation, graphes, . . .

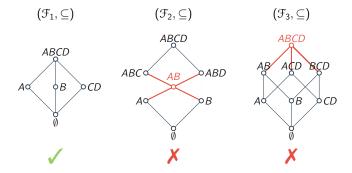
▶ Parmi ces exemples, un est un système de fermeture :

- $\triangleright \ \mathcal{F}_1 = \{\emptyset, A, B, CD, ABCD\},\$
- $\triangleright \ \mathcal{F}_2 = \{\emptyset, A, B, ABC, ABD, ABCD\},\$
- $\triangleright \ \mathcal{F}_3 = \{\emptyset, A, B, C, AB, ACD, BCD\}$



▶ Parmi ces exemples, un est un système de fermeture :

- $\, \triangleright \, \, \mathfrak{F}_1 = \{\emptyset, A, B, CD, ABCD\},$
- $\triangleright \ \mathcal{F}_2 = \{\emptyset, A, B, ABC, ABD, ABCD\},\$
- $\triangleright \ \mathfrak{F}_3 = \{\emptyset, A, B, C, AB, ACD, BCD\}$



Propriétés

- ▶ Une fermeture est associé à un *unique* système de fermeture.
- ▶ Un système de fermeture est associé à un *unique* opérateur de fermeture.
- ▶ Autrement dit : ce sont deux représentations d'une même information!

Propriété: Soit ϕ une fermeture sur R. Alors la collection $\mathcal{F}_{\phi} = \{X \subseteq R \mid \phi(X) = X\}$ est un système de fermeture.

Propriété : Soit $\mathcal F$ un système de fermeture sur R. Alors l'opérateur $\phi_{\mathcal F}$ telle que $\phi_{\mathcal F}(X)=\bigcap\{F\in\mathcal F\mid X\subseteq F\}$ est une fermeture.

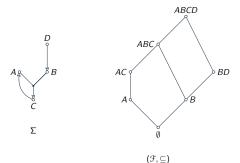
Le rapport avec nos DFs

- ▶ L'opérateur $(\cdot)^{\Sigma}$ associé à un Σ est une fermeture!
- lacksquare Donc, la collection des fermés de Σ

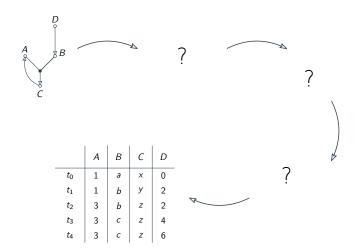
$$\mathfrak{F}_{\Sigma} = \{ X^{\Sigma} \mid X \subseteq \mathsf{R} \} = \{ X \subseteq \mathsf{R} \mid X = X^{\Sigma} \}$$

est un système de fermeture!

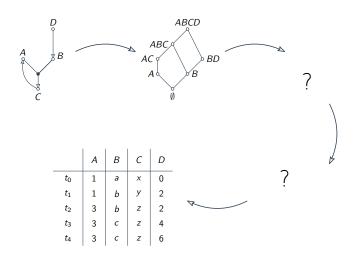
 $\textbf{Propriét\'e}: \ \mathsf{Soit} \ \Sigma \ \mathsf{un} \ \mathsf{ensemble} \ \mathsf{de} \ \mathsf{DFs}. \ \mathsf{La} \ \mathsf{famille} \ \mathfrak{F}_{\Sigma} \ \mathsf{est} \ \mathsf{un} \ \mathsf{syst\`eme} \ \mathsf{de} \ \mathsf{fermeture}.$



Armstrong wars : Épisode II



Armstrong wars : Épisode II

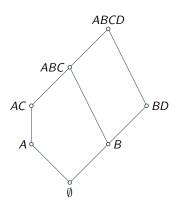


Représentation d'un système

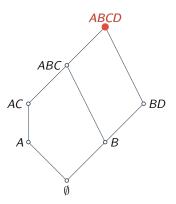
Définition - Infs-irréductibles, MAX-SETS

Soit $\mathcal F$ un système de fermeture sur R, et $M\in \mathcal F$, $M\neq R$. On dit que M est un inf-irréductible (ou MAX-SET) si quelque soit $F_1,F_2\in \mathcal F$, $M=F_1\cap F_2$ implique que $M=F_1$ ou $M=F_2$. Les inf-irréductibles de $\mathcal F$ sont notés $\mathcal M$.

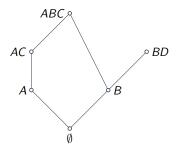
- ▶ Dans F, certains éléments sont obtenus par l'intersection d'autres, ils sont redondants et donc réductibles.
- Quand on enlève tous ces éléments redondants, il reste ceux qu'on ne peut pas obtenir par intersection : ce sont les infs-irréductibles!
- ▶ Autrement dit : \mathcal{M} est la partie « génératrice » de \mathcal{F} , on peut $\mathit{reconstruire}$ tout \mathcal{F} depuis \mathcal{M} (par \cap).
- \blacktriangleright \mathcal{M} concentre toute la « connaissance » de \mathcal{F} .



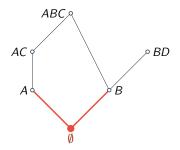
 $\mathfrak{F} = \{\emptyset, A, B, AC, ABC, BD, ABCD\},$



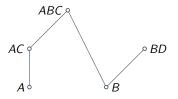
- $\blacktriangleright \ \mathcal{F} = \{\emptyset, A, B, AC, ABC, BD, ABCD\},\$
- ► ABCD n'est pas inf-irréductible par définition



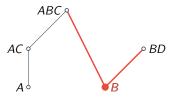
- ▶ $\mathcal{F} = \{\emptyset, A, B, AC, ABC, BD, ABCD\},\$
- ► ABCD n'est pas inf-irréductible par définition



- ▶ $\mathcal{F} = \{\emptyset, A, B, AC, ABC, BD, ABCD\},\$
- \blacktriangleright \emptyset est l'intersection de A et B, il n'est pas inf-irréductible

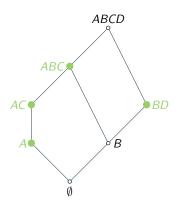


- ▶ $\mathcal{F} = \{\emptyset, A, B, AC, ABC, BD, ABCD\},\$
- \blacktriangleright \emptyset est l'intersection de A et B, il n'est pas inf-irréductible



- ▶ $\mathcal{F} = \{\emptyset, A, B, AC, ABC, BD, ABCD\},\$
- ▶ B est l'intersection de ABC et BD, il n'est pas inf-irréductible

- ▶ $\mathcal{F} = \{\emptyset, A, B, AC, ABC, BD, ABCD\},\$
- ▶ B est l'intersection de ABC et BD, il n'est pas inf-irréductible



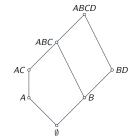
- ▶ $\mathcal{F} = \{\emptyset, A, B, AC, ABC, BD, ABCD\},\$
- ▶ Au final, les infs-irréductibles sont *A*, *AC*, *ABC*, *BD*.

Propriétés

- ▶ Soit \mathcal{F} un système de fermeture sur R, et $A \in R$.
- ▶ On définit $MAX(A) = max_{\subseteq} \{ F \in \mathcal{F} \mid A \notin F \}.$
- ▶ En d'autre termes : M est dans MAX(A) s'il ne contient pas A et si quelque soit le fermé M' « au dessus » de M ($M \subseteq M'$), M' contient A.

Propriété : Pour tout $A \in \mathbb{R}$, $MAX(A) \subseteq \mathcal{M}$. De plus, $\mathcal{M} = \bigcup_{A \in \mathbb{R}} MAX(A)$.

▶ Considérons C, son fermé est AC.

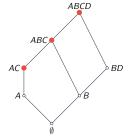


Propriétés

- ▶ Soit \mathcal{F} un système de fermeture sur R, et $A \in R$.
- ▶ On définit $MAX(A) = max_{\subseteq} \{ F \in \mathcal{F} \mid A \notin F \}.$
- ▶ En d'autre termes : M est dans MAX(A) s'il ne contient pas A et si quelque soit le fermé M' « au dessus » de M ($M \subseteq M'$), M' contient A.

Propriété : Pour tout $A \in \mathbb{R}$, $MAX(A) \subseteq \mathcal{M}$. De plus, $\mathcal{M} = \bigcup_{A \in \mathbb{R}} MAX(A)$.

- ► Considérons *C*, son fermé est *AC*.
- ► AC, ABC, ABCD ne sont pas intéressants (ils ont C),

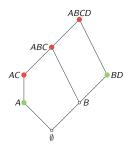


Propriétés

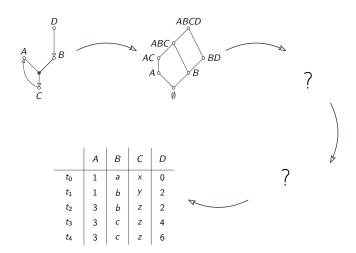
- ▶ Soit \mathcal{F} un système de fermeture sur R, et $A \in R$.
- ▶ On définit $MAX(A) = max_{\subseteq} \{ F \in \mathcal{F} \mid A \notin F \}.$
- ▶ En d'autre termes : M est dans MAX(A) s'il ne contient pas A et si quelque soit le fermé M' « au dessus » de M ($M \subseteq M'$), M' contient A.

Propriété : Pour tout $A \in \mathbb{R}$, $MAX(A) \subseteq \mathcal{M}$. De plus, $\mathcal{M} = \bigcup_{A \in \mathbb{R}} MAX(A)$.

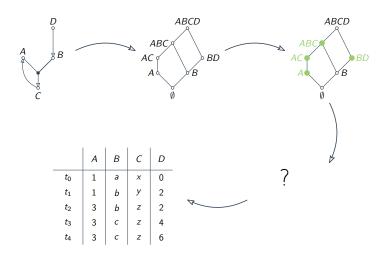
- ► Considérons *C*, son fermé est *AC*.
- ► AC, ABC, ABCD ne sont pas intéressants (ils ont C),
- ► Les *maximaux restants* sont *A* et *BD*



Armstrong wars : Épisode III



Armstrong wars : Épisode III



Agrées

▶ Idée : deux tuples d'une relation r respectent forcément les DFs de r. Donc, si on compare ces tuples et que l'on note les attributs sur lesquels ils sont en *en accord* (égaux), on obtient un *fermé* des DFs de r!

Définition - Agree set

Soit r une relation sur R et $t, t' \in r$. L'agree set de t, t', noté ag(t, t') est l'ensemble des attributs de R sur lesquels t et t' sont égaux, c.à.d, $ag(t, t') = \{A \in R \mid t[A] = t'[A]\}$. L'ensemble des agree sets de r est noté ag(r).

	Α	В	С	D
t_0	1	а	X	0
t_1	1	Ь	У	2
t_2	3	Ь	z	2
t_3	3	с	z	4
t_4	3	с	z	6

Agrées

▶ Idée : deux tuples d'une relation r respectent forcément les DFs de r. Donc, si on compare ces tuples et que l'on note les attributs sur lesquels ils sont en *en accord* (égaux), on obtient un *fermé* des DFs de r!

Définition - Agree set

Soit r une relation sur R et $t, t' \in r$. L'agree set de t, t', noté ag(t, t') est l'ensemble des attributs de R sur lesquels t et t' sont égaux, c.à.d, $ag(t, t') = \{A \in R \mid t[A] = t'[A]\}$. L'ensemble des agree sets de r est noté ag(r).

	Α	В	С	D
t_0	1	а	X	0
t_1	1	Ь	У	2
t_2	3	Ь	Z	2
<i>t</i> ₃	3	с	z	4
t_4	3	С	Z	6

Agrées

▶ Idée : deux tuples d'une relation r respectent forcément les DFs de r. Donc, si on compare ces tuples et que l'on note les attributs sur lesquels ils sont en *en accord* (égaux), on obtient un *fermé* des DFs de r!

Définition - Agree set

Soit r une relation sur R et $t, t' \in r$. L'agree set de t, t', noté ag(t, t') est l'ensemble des attributs de R sur lesquels t et t' sont égaux, c.à.d, $ag(t, t') = \{A \in R \mid t[A] = t'[A]\}$. L'ensemble des agree sets de r est noté ag(r).

	A	В	С	D	
t_0	1	а	х	0	
t_1	1	Ь	У	2	
t_2	3	Ь	Z	2	
t ₃	3	с	z	4	$ag(t_2,t_4) = AC$
t ₄	3	С	Z	6	

Le super théorème

Théorème : Soit Σ un ensemble de DFs et r une relation sur R. Alors, r est une relation d'Armstrong pour Σ si et seulement si $\mathcal{M} \subseteq ag(r) \subseteq \mathcal{F}$.

- ▶ Première idée de construction :
 - $\,\rhd\,$ pour chaque $M\in \mathcal{M},$ on crée deux tuples t_M^1, t_M^2 qui codent exactement M (agree set);
 - ightharpoonup pour tout $M' \neq M$, on garantit que $ag(t_M^i, t_{M'}^i) = \emptyset$ en faisant en sorte que les valeurs utilisées pour coder M soient disjointes de celles utilisées pour coder M';
 - $\,\triangleright\,$ on obtient une relation avec $2\times \mid \mathcal{M}\mid$ tuples.
- ▶ On peut faire mieux : en $|\mathcal{M}| + 1$ tuples.

Algo relation d'Armstrong

```
Algorithme ARMSTRONG(\mathfrak{M})
    Data: M un ensemble d'infs sur R
    Result: r, une relation d'Armstrong
    // Pour tout A \in \mathbb{R}, on fixe dom(A) = \mathbb{N}
    foreach A \in \mathbb{R} do t_0[A] := 0 end
    r := \{t_0\};
    i := 1:
    foreach M \in \mathcal{M} do
        foreach A \in R do
            if A \in M then t_i[A] := t_{i-1}[A];
          else t_i[A] := t_{i-1}[A] + 1;
        end
    end
    return r;
```

\mathfrak{M}		A	В	С	D
	t_0	0	0	0	0
Α					
BD					
AC					
ABC					

\mathfrak{M}		Α	В	С	D
	t_0	0	0	0	Q .
Α	t_1	0	1	1	1
BD					
AC					
ABC					

\mathfrak{M}		Α	В	С	D	
	t_0	0	0	0	0	$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = A$
	t_1	0	1	1	1	$ag(t_0,t_1)=A$
BD						
AC						
ABC						

\mathfrak{M}		A	В	С	D
	t_0	0	0	0	0
	t_1	0	1	1	1
BD	t_2	1	1	2	1
AC					
ABC					

		i				
\mathfrak{M}		Α	В	С	D	
	t_0	0	0	0	0	-
	t_1	0	1	1	1	25(t t) - PD
	t_2	1	1	2	1	$ag(t_1,t_2)=BD$
AC						
ABC						

\mathfrak{M}		Α	В	С	D
	t_0	0	0	0	0
	t_1	0	1	1	1
	t_2	1	1	2	1
AC	t ₃	1	2	2	2
ABC					

		1	1	1		
\mathfrak{M}		Α	В	С	D	
	t_0	0	0	0	0	
	t_1	0	1	1	1	
	t_2	1	1	2	1	$a_{\alpha}(t_{1},t_{2})=AC$
	<i>t</i> ₃	1	2	2	2	$ag(t_2,t_3) = AC$
ABC						

\mathfrak{M}		A	В	С	D
	t_0	0	0	0	0
	t_1	0	1	1	1
	t_2	1	1	2	1
	<i>t</i> ₃	1	2	2	2
ABC	t_4	1	2	2	3

\mathfrak{M}		Α	В	С	D	
	t_0	0	0	0	0	
	t_1	0	1	1	1	
	t_2	1	1	2	1	
	<i>t</i> ₃	1	2	2	2	-
	t_4	1	2	2	3	$ag(t_3,t_4) = ABC$

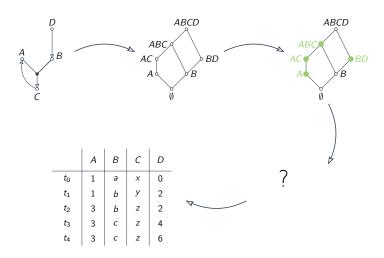
	Α	В	С	D
t_0	0	0	0	0
t_1	0	1	1	1
t_2	1	1	2	1
<i>t</i> ₃	1	2	2	2
t ₄	1	2	2	3

	Α	В	С	D
t_0	1	a	X	0
t_1	1	Ь	У	2
t_2	3	Ь	z	2
<i>t</i> ₃	3	С	z	4
t_4	3	С	Z	6

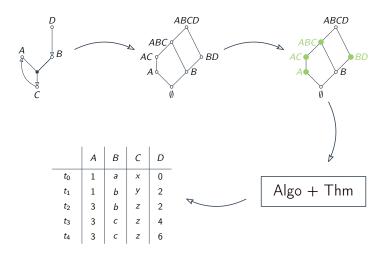
	A	В	С	D
t_0	1	a	X	0
t_1	1	Ь	У	2
t_2	3	Ь	Z	2
t_3	3	с	Z	4
t_4	3	с	Z	6

Théorème : Soit Σ un ensemble de DFs et ${\mathfrak M}$ ses infs-irréductibles. L'algorithme $\operatorname{ARMSTRONG}({\mathfrak M})$ calcule une relation d'Armstrong pour Σ .

Armstrong wars : Épisode IV



Armstrong wars : Épisode IV



Armstrong wars : Épisode IV

Formellement

- \blacktriangleright On part d'un ensemble de DFs Σ ,
- \blacktriangleright on calcule la collection de ses fermés \mathcal{F} ,
- ▶ on en déduit les infs-irréductibles M,
- \blacktriangleright en utilisant \mathcal{M} , théorème des agrées et l'algorithme $\operatorname{ARMSTRONG}$, on peut calculer une relation d'Armstrong r pour Σ .

La suite : correction d'une relation

- Ce qu'on a vu : comment construire une relation exemple qui satisfait un ensemble de DFs et seulement celles-ci.
- ▶ Ce qu'on va voir : comment *corriger* une relation pour qu'elle satisfasse des DFs, quitte à en satisfaire d'autres.
- ▶ Soit r une relation, Σ des DFs et $r \not\models \Sigma$. Principe :
 - ightharpoonup r doit contenir un *contre-exemple* à Σ , c.à.d, une paire de tuples t,t' telle que $ag(t,t') \notin \mathcal{F}$.
 - donc, on va corriger ce contre-exemple en changeant les valeurs, et répéter cette opération jusqu'à ce qu'aucun contre-exemple ne subsiste.

Algorithme CHASE(Σ , r)

Data: Σ un ensemble de DF sur R, r une relation

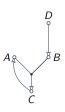
Result: une relation r' telle que $r' \models \Sigma$

Tant que c'est possible, appliquer la règle suivante :

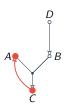
Soit $X \to Y \in \Sigma$ et $t, t' \in r$

if t[X] = t'[X] et il existe $A \in Y$ tel que $t[A] \neq t'[A]$ then t[A] := t'[A] := min(t[A], t'[A]);

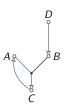
	A	В	С	D
t ₀	1	а	X	0
t_1	1	Ь	У	2
t_2	3	Ь	z	2
t_3	3	с	z	4
t_4	5	с	z	4
t_5	5	с	Z	6



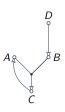
	Α	В	С	D
t_0	1	а	X	0
t_1	1	Ь	У	2
t_2	3	Ь	Z	2
<i>t</i> ₃	3	с	z	4
t ₄	5	С	Z	4
t_5	5	с	z	6



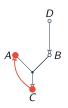
	A	В	С	D
t_0	1	а	X	0
t_1	1	Ь	У	2
t_2	3	Ь	Z	2
<i>t</i> ₃	3	с	z	4
t_4	3	С	Z	4
t_5	5	с	Z	6



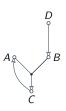
	A	В	С	D
t ₀	1	а	X	0
t_1	1	Ь	У	2
t_2	3	Ь	z	2
t_3	3	с	z	4
t_4	3	с	z	4
t_5	5	с	z	6



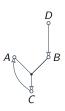
	Α	В	С	D
t_0	1	а	X	0
t_1	1	Ь	У	2
t_2	3	Ь	Z	2
<i>t</i> ₃	3	с	z	4
t ₄	3	С	Z	4
t_5	5	с	z	6



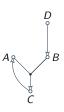
	A	В	С	D
	1	а	Х	0
t_1	1	Ь	У	2
t_2	3	Ь	z	2
<i>t</i> ₃	3	с	z	4
t ₄	3	С	Z	4
<i>t</i> ₅	3	с	Z	6



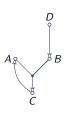
	A	В	С	D
t ₀	1	а	Х	0
t_1	1	Ь	У	2
t_2	3	Ь	z	2
t_3	3	с	z	4
t_4	3	с	z	4
t_5	3	с	Z	6



	A	В	С	D
t ₀	1	а	Х	0
t_1	1	Ь	У	2
t_2	3	Ь	Z	2
t_3	3	с	z	4
t_5	3	с	z	6



	Α	В	С	D
t_0	1	а	Х	0
t_1	1	Ь	У	2
t_2	3	Ь	z	2
t_3	3	с	Z	4
t_5	3	с	z	6



Théorème : L'algorithme $\mathrm{CHASE}(\Sigma,r)$ s'arrête, et la relation résultat r' satisfait Σ .

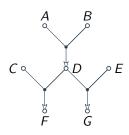
Que peut-on faire d'autre avec Chase?

- ► Tester en partie la « qualité » d'une décomposition de R :
 - ✓ Décomposition sans perte de données (jointures)
 - X Décomposition sans perte de dépendances fonctionnelles (projection des DFs)
- Calculer la fermeture d'un ensemble d'attributs par rapport à Σ,
- ► Tester l'implication logique (tableaux).

Algorithme de calcul de fermeture

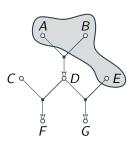
```
Algorithme FERMETURE(X, \Sigma)
    Data: X \subseteq R; \Sigma un ensemble de DF sur R
    Result: X^{\Sigma}, la fermeture de X par rapport à \Sigma
    X^{\Sigma} := X
    fini := false:
    On construit une relation r = t, t' avec t[X] = t'[X] et
    t[A] \neq t'[A] pour tout A \notin X;
    r' = \text{CHASE}(r, \Sigma):
    if |r'| = 2 then
        X^{\Sigma} = ag(t, t')
    else
     X^{\Sigma} = \mathbb{R}
    end
    return X^{\Sigma}:
```

	Α	В	C	D	Ε	F	G
t							
t'							



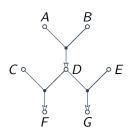
- $\blacktriangleright \ \, \mathsf{Soit} \,\, \Sigma = \{ AB \mathop{\rightarrow} D, CD \mathop{\rightarrow} F, DE \mathop{\rightarrow} G \}. \,\, \mathsf{On \,\, cherche} \,\, ABE^{\Sigma}.$
- •

	Α	В	C	D	Ε	F	G
t	1	1	1	1	1	1	1
t′	1	1	0	0	1	0	0



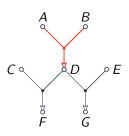
$$\blacktriangleright \ \, \mathsf{Soit} \,\, \Sigma = \{ AB \mathop{\rightarrow} D, \, CD \mathop{\rightarrow} F, \, DE \mathop{\rightarrow} G \}. \,\, \mathsf{On \,\, cherche} \,\, ABE^{\Sigma}.$$

				D			
t	1	1	1	1	1	1	1
ť	1	1	0	0	1	0	0



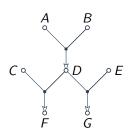
$$\blacktriangleright \ \, \mathsf{Soit} \,\, \Sigma = \{ \mathit{AB} \mathop{\rightarrow} \mathit{D}, \mathit{CD} \mathop{\rightarrow} \mathit{F}, \mathit{DE} \mathop{\rightarrow} \mathit{G} \}. \,\, \mathsf{On} \,\, \mathsf{cherche} \,\, \mathit{ABE}^{\Sigma}.$$

	Α	В	C	D	Ε	F	G
t	1	1	1	1	1	1	1
t'	1	1	0	0	1	0	0



$$\blacktriangleright \ \, \mathsf{Soit} \,\, \Sigma = \{ \mathit{AB} \mathop{\rightarrow} \mathit{D}, \mathit{CD} \mathop{\rightarrow} \mathit{F}, \mathit{DE} \mathop{\rightarrow} \mathit{G} \}. \,\, \mathsf{On} \,\, \mathsf{cherche} \,\, \mathit{ABE}^{\Sigma}.$$

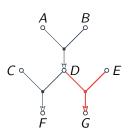
	Α	В	C	D	Ε	F	G
				0			
ť	1	1	0	0	1	0	0



$$\blacktriangleright \ \, \mathsf{Soit} \,\, \Sigma = \{ AB \mathop{\rightarrow} D, CD \mathop{\rightarrow} F, DE \mathop{\rightarrow} G \}. \,\, \mathsf{On \,\, cherche} \,\, ABE^{\Sigma}.$$

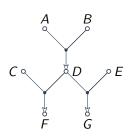
 \triangleright

	Α	В	C	D	Ε	F	G
t	1	1	1	0	1	1	1
t'	1	1	0	0	1	0	0



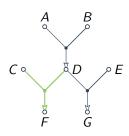
$$\blacktriangleright \ \, \mathsf{Soit} \,\, \Sigma = \{ AB \mathop{\rightarrow} D, CD \mathop{\rightarrow} F, DE \mathop{\rightarrow} G \}. \,\, \mathsf{On \,\, cherche} \,\, ABE^{\Sigma}.$$

	Α	В	C	D	Ε	F	G
				0			
t'	1	1	0	0	1	0	0



$$\blacktriangleright \ \, \mathsf{Soit} \,\, \Sigma = \{ AB \mathop{\rightarrow} D, CD \mathop{\rightarrow} F, DE \mathop{\rightarrow} G \}. \,\, \mathsf{On \,\, cherche} \,\, ABE^{\Sigma}.$$

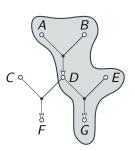
				D			
				0			
t'	1	1	0	0	1	0	0



 $\blacktriangleright \ \, \mathsf{Soit} \,\, \Sigma = \{ \mathit{AB} \mathop{\rightarrow} \mathit{D}, \mathit{CD} \mathop{\rightarrow} \mathit{F}, \mathit{DE} \mathop{\rightarrow} \mathit{G} \}. \,\, \mathsf{On} \,\, \mathsf{cherche} \,\, \mathit{ABE}^{\Sigma}.$

>

	Α						
t	1	1	1	0	1	1	0
t'	1	1	0	0	1	0	0



- ▶ Soit $\Sigma = \{AB \rightarrow D, CD \rightarrow F, DE \rightarrow G\}$. On cherche ABE^{Σ} .
- ▶ On obtient $ABE^{\Sigma} = ABDEG$.

Pour finir

- ▶ Soit R = $\{A, B, C, D, E\}$ et $\Sigma = \{AB \rightarrow C, AC \rightarrow D, BC \rightarrow E\}$:
 - 1. Construire une relation d'Armstrong r pour Σ ,
 - 2. Corriger la relation r pour que $r \models \Sigma \cup \{A \rightarrow E, B \rightarrow D\}$
 - 3. Bonus : remplir r avec des données « réalistes » (films, livres, types de pantoufles, pizzas, . . .)

