

Enumerating maximal consistent closed sets in closure systems AlCoLoCo

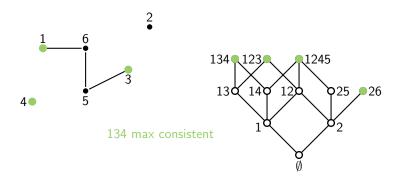
Lhouari Nourine and Simon Vilmin.

LIMOS, UCA

May 2021

Implications and inconsistency

- ightharpoonup A set X of attributes with implications Σ , and closure system $\mathcal F$
- ► A concistency graph G (over X)
- ▶ Problem MCCENUM: enumerate maximal consistent closed sets of F w.r.t G



Formally

Problem - Maximal consistent closed sets enumeration (MCCENUM)

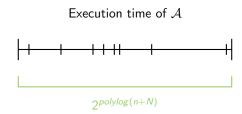
- ▶ Input: A set of implications Σ over X, a consistency graph G = (X, E).
- ▶ Output: maximal consistent closed sets of \mathcal{F} w.r.t G, denoted maxCC(Σ , G).

Origins:

- Representation for median-semilattices [Barthélemy, Constantin, 1993],
 [Nielsen et al., 1981]
- ► Extended to modular-semilattices with applications to combinatorial optimizations [Hirai, Nakashima, 2020], [Hirai, Nakashima, 2018]
- MCCENUM output-polynomial for modular/median-semilattices [Hirai, Nakashima, 2018], [Kavvadias et al, 1995]
- Restricted case of dualization in lattices given by implicational bases, an NP-complete problem [Kavvadias et al, 1995], [Babin, Kuznetsov, 2017].

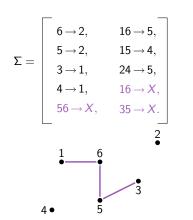
Quick Recap on Enumeration

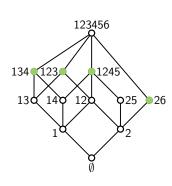
- ▶ In enumeration, the size N of the output may be *exponential* in the size n.
- \blacktriangleright Let \mathcal{A} be an enumeration algorithm
 - \triangleright Execution time bounded by poly(n+N): \mathcal{A} runs in *output-polynomial* time,
 - \triangleright Delay poly(n) between two outputs: \mathcal{A} has polynomial delay
 - Delay poly(n+i) between i-th and i+1-outputs: \mathcal{A} runs in incremental-polynomial time,
 - \triangleright Execution time bounded by $2^{\text{polylog}(n+N)}$: \mathcal{A} runs in *output-quasipolynomial* time.



Connexion with co-atoms

- ▶ Using edges of G as new keys,
 - \triangleright A key is a minimal subset K of X such that $K \rightarrow X$ holds.
- ▶ Maximal consistent closed sets are now *co-atoms*.





Connexion with co-atoms (bis)

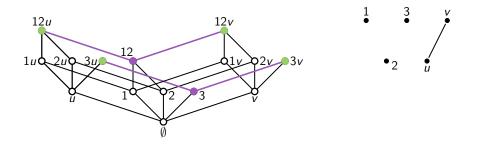
- ▶ When adding edges of *G* as *keys*
- ▶ MCCENUM becomes a *restricted* instance of :

Problem - Co-atoms enumerations (CE)

- ▶ Input: A set of implications Σ over X.
- \triangleright Output: Co-atoms of \mathcal{F} .
- ▶ But, CE is untractable in output-poly time (unless P = NP) ! [Kavvadias et al, 1995]
- ▶ So, what about our problem ?

Proof by picture

- ▶ Start from Σ over X (with induced \mathcal{F})
- ▶ Create fresh elements u, v, add $X \rightarrow uv$ to Σ
- ▶ The graph G (over $X \cup \{u, v\}$) has a unique edge: uv
- ightharpoonup maximal consistent closed sets are duplications of \mathcal{F} 's co-atoms



Results

Theorem [Nourine, V., 2021+]: The problem $\mathrm{MCCE}_{\mathrm{NUM}}$ cannot be solved in output-polynomial time unless P = NP.

- ▶ Look carefully at the reduction of [Kavvadias et al, 1995]
- ▶ Slightly change the implication $X \rightarrow uv$
- ▶ Use the D-relation of [Freese et al, 1995] for lower bounded closure systems (i.e. obtained by repeated duplications of lower-intervals)

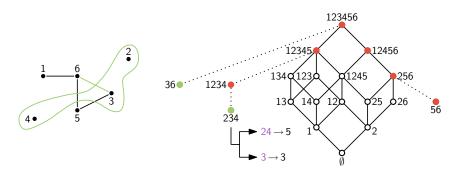
Corollary [Nourine, V., 2021+]: The problem $\mathrm{MCCE}_{\mathrm{NUM}}$ cannot be solved in output-polynomial time unless P = NP, even when restricted to lower bounded closure systems.

An approach to tractable cases

- ▶ Co-atoms of are maximal independent sets of keys:
 - ▶ Add to Σ the implications $uv \rightarrow X$, for edges uv of G
 - ightharpoonup Compute the keys ${\cal K}$
 - \triangleright Find the maximal independent sets $MIS(\mathcal{K}) = maxCC(\Sigma, G)$.

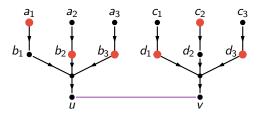
How do keys behave?

- ▶ In our case, a subset F must contain a key if:
 - it contains an edge of G,
 - ▶ its *closure contains* an edge of *G*
- ▶ Thus, a key K has the form $K = A_u \cup A_v$ with A_u, A_v minimal generators of u, v ▷ A_u minimal generator of u if it is a minimal subset of X such that $A_u \rightarrow u$.



Exponential Example

- $X = \{a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, \ldots, c_n, d_1, \ldots, d_n, u, v\}$
- ightharpoonup with implications:
- ► G has a unique edge uv
- ▶ maxCC(Σ , G) has 2*n* solutions : X minus a triple $\{u, a_i, b_i\}$ or $\{v, c_i, d_i\}$
- ▶ at least 2^{2n} keys of size 2n: all binary words on $\{a_i, b_i\}^n \times \{c_i, d_i\}^n$



Carathéodory number

- ightharpoonup Carathéodory number $c(\mathcal{F})$: max. size of a minimal generator
- ▶ If bounded by a constant *k*:
 - ▶ Keys have size $\leq 2 \times k$
 - \triangleright and \mathcal{K} has size poly(|X|)!
- ▶ $MIS(K) = maxCC(\Sigma, G)$ computable in incremental-poly time [Eiter et al., 1996]

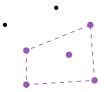
Some closures with bounded $c(\mathcal{F})$

ideals of a poset $c(\mathcal{F})=1$

convex subsets of a poset

$$c(\mathcal{F})=2$$

monophonic convexity of a chordal graph $c(\mathcal{F})=2$



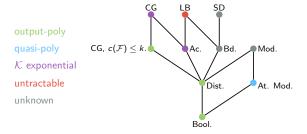
convex hull in \mathbb{R}^k $c(\mathcal{F}) = k + 1$

The (atomistic) modular case

- ▶ MCCENUM easy to solve in distributive closure systems
- ▶ What about modularity ? Focus on the atomistic case:
 - \triangleright independence of minimal generators [Grätzer, 2011]: subsets of A_u generates a boolean sublattice of \mathcal{F}
 - \triangleright biatomicity [Bennett, 1987]: if $F \in \mathcal{F}$ and $F \cup x \rightarrow y$,

Theorem [Nourine, V., 2021+]: The problem MCCENUM can be solved in output-quasipolynomial time in atomistic modular closure systems.

MCCENUM: The big picture



Bool. = Boolean

Dist. = Distributive

At. = Atomistic

 $\mathsf{Mod}. = \mathsf{Modular}$

Ac. = Acyclic CG = Convex Geometry

Bd = Bounded

 $\mathsf{LB} = \mathsf{Lower} \; \mathsf{Bounded}$

SD = Semidistributive

Conclusion

- ▶ Problem: given Σ and G = (X, E), find maximal consistent (i.e independent) closed sets of \mathcal{F} w.r.t to G
- Results:
 - \nearrow Not solvable in output-polynomial time unless P = NP,
 - ✓ Incremental-polynomial if the Carathéodory number is bounded,
 - ✓ Output-quasipolynomial in atomistic modular closure systems.
- ▶ Further research:
 - ▶ Tractability if the context is given as an input ?
 - Dutput-polynomial classes of closure systems generalizing distributivity ?

References

▶ J-P. Barthélemy, J. Constantin Median graphs, parallelism and posets. Discrete Mathematics. 111:49-63, 1993.

M. Nielsen, G. Plotkin, G. Winskel Petri nets, event structures and domains, part I. Theoretical Computer Science, 13:85-108, 1981.

H. Hirai, S. Nakashima

A compact representation for modular semilattices and its applications. *Order*, 37:479-507, 2020.

▶ H Hiroshi and T Oki

A compact representation for minimizers of *k*-submodular functions. *Journal of Combinatorial Optimization*, 36:709-741, 2018.

T. Eiter, G. Gottlob, K. Makino.

New results on monotone dualization and generating hypergraph transversals. *SIAM Journal on Computing*, 32:514-537, 2003.

M. Fredman, L. Khachiyan.

On the complexity of dualization of monotone disjunctive normal forms. *Journal of Algorithms*, 21:618-628, 1996.

References

- D. Kavvadias, M. Sideri, E. Stavropoulos
 Generating all maximal models of a Boolean expression.
 Information Processing Letters, 74:157-162, 2000.
- M. Babin, S. Kuznetsov Dualization in lattices given by ordered sets of irreducibles. Theoretical Computer Science, 658: 316-326, 2017.
- ► L. Nourine, S. Vilmin.

 Enumerating maximal consistent closed sets in closure systems arXiv preprint arXiv:2102.04245, 2021.
- ► M.K. Bennett
 Biatomic lattices.

 Algebra Universalis, 24:60-73, 1987.
- ► G. Grätzer Lattice theory: foundation. Springer Science & Business Media, 2011.
- R. Freese, J. Ježek, J.B. Nation Free lattices. American Mathematical Soc., 1995.